Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automatic recognition of ingestive sounds of cattle based on hidden Markov models

Milone, Diego HumbertoIcon ; Galli, Julio Ricardo; Cangiano, Carlos Alberto; Rufiner, Hugo LeonardoIcon ; Laca, Emilio A.
Fecha de publicación: 09/2012
Editorial: Elsevier
Revista: Computers and Eletronics in Agriculture
ISSN: 0168-1699
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Information about ingestive events like chewing and biting is useful for estimation of intake and monitoring of grazing behaviour. We present an automatic tool to decode ingestive sounds of cattle into ingestive events. Ingestive sounds can be recorded easily and without alteration of normal grazing behaviour by placing a microphone on the forehead of the animal. However, recorded sound need to be decoded automatically for the method to be of practical use. Hidden Markov models have been successfully used to segment and classify acoustic signals. In this work we extend the use of hidden Markov models to recognise ingestive sounds of cattle. We present new findings about the spectral content of the acoustic signals and a novel language model for the recognizer. Three types of ingestive events (bites, chews and chewbites) by cows grazing tall (24.5 ± 3.8 cm) or short (11.6 ± 1.9 cm) alfalfa or fescue were successfully recognised. Recognition rates were 84% for tall alfalfa, 65% for short alfalfa, 85% for tall fescue and 84% for short fescue. These levels of correct classification are suitable for quantification of grazing behaviour.
Palabras clave: Animal behavior , Acoustic analysis , Hidden Markov Models
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 591.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/270101
URL: http://www.sciencedirect.com/science/article/pii/S0168169912001184#
DOI: http://dx.doi.org/10.1016/j.compag.2012.05.004
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Milone, Diego Humberto; Galli, Julio Ricardo; Cangiano, Carlos Alberto; Rufiner, Hugo Leonardo; Laca, Emilio A.; Automatic recognition of ingestive sounds of cattle based on hidden Markov models; Elsevier; Computers and Eletronics in Agriculture; 87; 9-2012; 51-55
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES