Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Data processing for comparison of gene expression levels from raw datasets using free software r in hepatocellular carcinoma patients

Baffo, E.; Hidalgo, FlorenciaIcon ; Pariani, Alejandro PedroIcon ; Larocca, Maria CeciliaIcon ; Favre, C.
Tipo del evento: Reunión
Nombre del evento: LXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de Fisiología
Fecha del evento: 11/2020
Institución Organizadora: Sociedad Argentina de Investigación Clínica; Sociedad Argentina de Inmunología; Sociedad Argentina de Fisiología;
Título de la revista: Medicina
Editorial: Fundación Revista Medicina
Idioma: Inglés
Clasificación temática:
Otras Ciencias Biológicas

Resumen

Many datasets on mutations, changes in the number or expressionlevels of genes, as well as clinics are now available for differentcancers. Thus, organization in data banks, with comparison andvisualization tolos, is growing and useful for biomedical research.Moreover, the use of raw data has a great potential for specific biostatistical studies.Hepatocellular carcinoma (HCC) is the second most lethal cancerand it lacks effective therapy. Data analysis from patient databases can be useful to identify molecular markers, targets for potentialtreatments, and to investigate hypothetical mechanisms.The aim of this study was to process raw data from the ?The CancerGenome Atlas-Liver Hepatocellular Carcinoma? project (TCGA-LIHC) dataset to analyze them with the free software for statisticalcomputing R, and to compare the expression levels of genes involved in an antimigratory AMPK-p53 axis that we study at the cellular level: the different genes for the three AMPK subunits (PRKAA1,A2, B1, etc.); TP53; and EMT transcription factors SNAI1 and 2,which are p53 targets.First, bioinformatic analyses of TP53 mRNA expression with opensource online tools showed an increase in the overall survival inpatients with low versus high TP53 expression: 55.1 months versus61.7 months, respectively (P=0.03). Besides, TP53 showed mutations (61% missense and 31% truncating) in 30.5% of patients.To better analyze mRNA levels, the whole raw data was organizedwith R, leaving only those of the genes of interest, separating insamples of healthy and tumor tissue and matching those corresponding to the same patient. mRNA (RNA-seq Illumina) data were selected and compared. As an example, the median value of mRNAlevels for SNAI2 increased from 144.7 in healthy to 205.7 in tumortissue (P=0.01, Wilcoxon Signed Rank Test).This methodology can be systematized to compare gene expressionin HCC patients with respect to non-tumor tissue, and association intheir changes can also be analyzed.
Palabras clave: HCC , Gene expression , p53 , EMT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 208.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/269805
URL: https://www.medicinabuenosaires.com/indices-de-2020/
Colecciones
Eventos(IFISE)
Eventos de INST.DE FISIOLOGIA EXPERIMENTAL (I)
Citación
Data processing for comparison of gene expression levels from raw datasets using free software r in hepatocellular carcinoma patients; LXV Reunión Anual de la Sociedad Argentina de Investigación Clínica; LXVIII Reunión Anual de la Sociedad Argentina de Inmunología y Reunión Anual de la Sociedad Argentina de Fisiología; Argentina; 2020; 1-2
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES