Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A general discrete‐time modeling framework for animal movement using multistate random walks

McClintock, Brett T.; King, Ruth; Thomas, Len; Matthiopoulos, Jason; McConnell, Bernie J.; Morales, Juan ManuelIcon
Fecha de publicación: 06/2012
Editorial: Ecological Society of America
Revista: Ecological Monographs
ISSN: 0012-9615
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ecología

Resumen

Recent developments in animal tracking technology have permitted the collection of detailed data on the movement paths of individuals from many species. However, analysis methods for these data have not developed at a similar pace, largely due to a lack of suitable candidate models, coupled with the technical difficulties of fitting such models to data. To facilitate a general modeling framework, we propose that complex movement paths can be conceived as a series of movement strategies among which animals transition as they are affected by changes in their internal and external environment. We synthesize previously existing and novel methodologies to develop a general suite of mechanistic models based on biased and correlated random walks that allow different behavioral states for directed (e.g., migration), exploratory (e.g., dispersal), area-restricted (e.g., foraging), and other types of movement. Using this “toolbox” of nested model components, multistate movement models may be custom-built for a wide variety of species and applications. As a unified state-space modeling framework, it allows the simultaneous investigation of numerous hypotheses about animal movement from imperfectly observed data, including time allocations to different movement behavior states, transitions between states, the use of memory or navigation, and strengths of attraction (or repulsion) to specific locations. The inclusion of covariate information permits further investigation of specific hypotheses related to factors driving different types of movement behavior. Using reversible-jump Markov chain Monte Carlo methods to facilitate Bayesian model selection and multi-model inference, we apply the proposed methodology to real data by adapting it to the natural history of the grey seal (Halichoerus grypus) in the North Sea. Although previous grey seal studies tended to focus on correlated movements, we found overwhelming evidence that bias toward haul-out or foraging locations better explained seal movement than did simple or correlated random walks. Posterior model probabilities also provided evidence that seals transition among directed, area-restricted, and exploratory movements associated with haul-out, foraging, and other behaviors. With this intuitive framework for modeling and interpreting animal movement, we believe that the development and application of custom-made movement models will become more accessible to ecologists and non-statisticians.
Palabras clave: ANIMAL LOCATION DATA , BIASED CORRELATED RANDOM WALK , MOVEMENT MODEL , STATE-SPACE MODEL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.270Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/269712
URL: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/11-0326.1
DOI: https://doi.org/10.1890/11-0326.1
Colecciones
Articulos(INIBIOMA)
Articulos de INST. DE INVEST.EN BIODIVERSIDAD Y MEDIOAMBIENTE
Citación
McClintock, Brett T.; King, Ruth; Thomas, Len; Matthiopoulos, Jason; McConnell, Bernie J.; et al.; A general discrete‐time modeling framework for animal movement using multistate random walks; Ecological Society of America; Ecological Monographs; 82; 3; 6-2012; 335-349
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES