Artículo
Massive Production of Cancer Synthetic RNA-Seq Gene Expression Samples
Fecha de publicación:
01/08/2025
Editorial:
Springer
Revista:
SN Computer Science
e-ISSN:
2661-8907
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The financial and practical complexities of collecting a statistically significant number of tumour gene expression data canseverely affect the reliability of differential expression analysis in cancer. Generally, studies are performed with an immensenumber of genes related to a minimal number of samples, leading to an underrepresentation of the disease heterogeneity. Apotential solution lies in generating artificial tumour samples similar to real ones, thereby increasing the accuracy and robust-ness of biological experiments. In that sense, this work proposes a Wasserstein Generative Adversarial Network architecturefor generating synthetic tumour samples. The primary objective is to ensure that the generated samples accurately preservethe shared behaviour of genes and the differential expression patterns observed in tumour samples. The study focuses onfour cancer types: thyroid, breast, lung and prostate. The experimental results confirm that our proposal can reproduce thecharacteristics of the original samples, suggesting that the model is a reliable framework for increasing the number of tumoursamples. In addition, the model proved able to exacerbate the distributions shown by each gene, allowing the discovery ofpossible hidden patterns.
Palabras clave:
NEURAL NETWORKS
,
DATA GENERATION
,
CANCER
,
GENE EXPRESSION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(ICB)
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Citación
Rojas, Matias Gabriel; Olivera, Ana Carolina; Vidal, Pablo Javier; Carballido, Jessica Andrea; Massive Production of Cancer Synthetic RNA-Seq Gene Expression Samples; Springer; SN Computer Science; 6; 6; 1-8-2025; 1 - 18
Compartir
Altmétricas