Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automatic Voice Disorder Detection from a Practical Perspective

Vidal Dominguez, JazminIcon ; Ribas, Dayana; Bonomi, Cyntia; Lleida, Eduardo; Ferrer, LucianaIcon ; Ortega, Alfonso
Fecha de publicación: 05/2024
Editorial: Mosby-Elsevier
Revista: Journal Of Voice : Official Journal Of The Voice Foundation.
ISSN: 0892-1997
e-ISSN: 1873-4588
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Voice disorders, such as dysphonia, are common among the general population. These pathologies often remain untreated until they reach a high level of severity. Assisting the detection of voice disorders could facilitate early diagnosis and subsequent treatment. In this study, we address the practical aspects of automatic voice disorders detection (AVDD). In real-world scenarios, data annotated for voice disorders is usually scarce due to various challenges involved in the collection and annotation of such data. However, some relatively large datasets are available for a reduced number of domains. In this context, we propose the use of a combination of out-of-domain and in-domain data for training a deep neural network-based AVDD system, and offer guidance on the minimum amount of in-domain data required to achieve acceptable performance. Further, we propose the use of a cost-based metric, the normalized expected cost (EC), to evaluate performance of AVDD systems in a way that closely reflects the needs of the application. As an added benefit, optimal decisions for the EC can be made in a principled way given by Bayes decision theory. Finally, we argue that for medical applications like AVDD, the categorical decisions need to be accompanied by interpretable scores that reflect the confidence of the system. Even very accurate models often produce scores that are not suited for interpretation. Here, we show that such models can be easily improved by adding a calibration stage-trained with just a few minutes of in-domain data. The outputs of the resulting calibrated system can then better support practitioners in their decision-making process.
Palabras clave: AUTOMATIC VOICE DISORDER DETECTION , CALIBRATION , HEALTH APPLICATIONS , PROPER SCORING RULES , SELF SUPERVISED MODELS
Ver el registro completo
 
Archivos asociados
Tamaño: 715.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/269540
URL: https://pubmed.ncbi.nlm.nih.gov/38811307/
DOI: http://dx.doi.org/10.1016/j.jvoice.2024.03.001
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Citación
Vidal Dominguez, Jazmin; Ribas, Dayana; Bonomi, Cyntia; Lleida, Eduardo; Ferrer, Luciana; et al.; Automatic Voice Disorder Detection from a Practical Perspective; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 5-2024; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES