Mostrar el registro sencillo del ítem
dc.contributor.author
Gonzalez, Mailen

dc.contributor.author
Fuertes García, José Manuel
dc.contributor.author
Zanchetta, María Belén
dc.contributor.author
Abdala, Ruben

dc.contributor.author
Massa, José María

dc.date.available
2025-08-20T15:45:22Z
dc.date.issued
2025-01
dc.identifier.citation
Gonzalez, Mailen; Fuertes García, José Manuel; Zanchetta, María Belén; Abdala, Ruben; Massa, José María; Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry; Multidisciplinary Digital Publishing Institute; Diagnostics; 15; 2; 1-2025; 1-16
dc.identifier.issn
2075-4418
dc.identifier.uri
http://hdl.handle.net/11336/269416
dc.description.abstract
Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited. Methods: A dataset of 1531 spine DXA images was automatically segmented and labelled based on Trabecular Bone Score (TBS) values. Radiomic features were extracted using Pyradiomics, and various resampling techniques were employed to address class imbalance. Three machine learning classifiers (Logistic Regression, Support Vector Machine (SVM), and XGBoost) were trained and evaluated using standard performance metrics. Results: The SVM classifier outperformed the other classifiers. The highest F-score of 97.5% was achieved using the Grey Level Dependence Matrix and Grey Level Run Length Matrix feature combination with SMOTEENN resampling, which proved to be the most effective resampling technique, while the undersampling method yielded the lowest performance. Conclusions: This research demonstrates the potential of radiomic texture features, resampling techniques, and machine learning methods for classifying DXA images into healthy or degraded bone structures, which potentially leads to improved clinical diagnosis and treatment.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Multidisciplinary Digital Publishing Institute
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DATA RESAMPLING
dc.subject
DUAL ENERGY X-RAY ABSORPTIOMETRY
dc.subject
MACHINE LEARNING
dc.subject
RADIOMICS
dc.subject
TRABECULAR BONE SCORE
dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-08-20T14:58:03Z
dc.journal.volume
15
dc.journal.number
2
dc.journal.pagination
1-16
dc.journal.pais
Suiza

dc.journal.ciudad
Basilea
dc.description.fil
Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina
dc.description.fil
Fil: Fuertes García, José Manuel. Universidad de Jaén; España
dc.description.fil
Fil: Zanchetta, María Belén. Instituto de Diagnostico E Investigaciones Metabolicas (idim);
dc.description.fil
Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);
dc.description.fil
Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina
dc.journal.title
Diagnostics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4418/15/2/175
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/diagnostics15020175
Archivos asociados