Mostrar el registro sencillo del ítem

dc.contributor.author
Gonzalez, Mailen  
dc.contributor.author
Fuertes García, José Manuel  
dc.contributor.author
Zanchetta, María Belén  
dc.contributor.author
Abdala, Ruben  
dc.contributor.author
Massa, José María  
dc.date.available
2025-08-20T15:45:22Z  
dc.date.issued
2025-01  
dc.identifier.citation
Gonzalez, Mailen; Fuertes García, José Manuel; Zanchetta, María Belén; Abdala, Ruben; Massa, José María; Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry; Multidisciplinary Digital Publishing Institute; Diagnostics; 15; 2; 1-2025; 1-16  
dc.identifier.issn
2075-4418  
dc.identifier.uri
http://hdl.handle.net/11336/269416  
dc.description.abstract
Background/Objectives: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited. Methods: A dataset of 1531 spine DXA images was automatically segmented and labelled based on Trabecular Bone Score (TBS) values. Radiomic features were extracted using Pyradiomics, and various resampling techniques were employed to address class imbalance. Three machine learning classifiers (Logistic Regression, Support Vector Machine (SVM), and XGBoost) were trained and evaluated using standard performance metrics. Results: The SVM classifier outperformed the other classifiers. The highest F-score of 97.5% was achieved using the Grey Level Dependence Matrix and Grey Level Run Length Matrix feature combination with SMOTEENN resampling, which proved to be the most effective resampling technique, while the undersampling method yielded the lowest performance. Conclusions: This research demonstrates the potential of radiomic texture features, resampling techniques, and machine learning methods for classifying DXA images into healthy or degraded bone structures, which potentially leads to improved clinical diagnosis and treatment.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Multidisciplinary Digital Publishing Institute  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DATA RESAMPLING  
dc.subject
DUAL ENERGY X-RAY ABSORPTIOMETRY  
dc.subject
MACHINE LEARNING  
dc.subject
RADIOMICS  
dc.subject
TRABECULAR BONE SCORE  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Comparison of resampling methods and radiomic machine learning classifiers for predicting bone quality using dual-energy X-ray absorptiometry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-20T14:58:03Z  
dc.journal.volume
15  
dc.journal.number
2  
dc.journal.pagination
1-16  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Gonzalez, Mailen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina  
dc.description.fil
Fil: Fuertes García, José Manuel. Universidad de Jaén; España  
dc.description.fil
Fil: Zanchetta, María Belén. Instituto de Diagnostico E Investigaciones Metabolicas (idim);  
dc.description.fil
Fil: Abdala, Ruben. Instituto de Diagnostico E Investigaciones Metabolicas (idim);  
dc.description.fil
Fil: Massa, José María. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Investigaciones en Tecnología Informática Avanzada; Argentina  
dc.journal.title
Diagnostics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4418/15/2/175  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/diagnostics15020175