Artículo
An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435
Fecha de publicación:
12/01/2016
Editorial:
Elsevier Science
Revista:
Journal of Biotechnology
ISSN:
0168-1656
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, the ethanolysis of triglycerides catalyzed by immobilized lipase was studied, focusing on the secondary reaction of acyl migration. The catalytic tests were performed in a solvent-free reaction medium using Novozym 435 as biocatalyst. The selected experimental variables were biocatalyst loading (5-20 mg), reaction time (30-90 min), and chain length of the fatty acids in triglycerides with and without unsaturation (short (triacetin), medium (tricaprylin) and long (tripalmitin/triolein)). The formation of 2-monoglyceride by ethanolysis of triglycerides was favored by long reaction times and large biocatalyst loading with saturated short- to medium-chain triglycerides. In the case of long-chain triglycerides, the formation of this monoglyceride was widely limited by acyl migration. In turn, acyl migration increased the yield of ethyl esters and minimized the content of monoglycerides and diglycerides. Thus, the enzymatic synthesis of biodiesel was favored by long-chain triglycerides (which favor the acyl migration), long reaction times and large biocatalyst loading. The conversion of acylglycerides made from long-chain fatty acids with unsaturation was relatively low due to limitations in their access to the active site of the lipase.
Palabras clave:
Acyl Migration
,
Ethanolysis
,
Novozym 435
,
Triglycerides
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Sanchez, Daniel Alberto; Tonetto, Gabriela Marta; Ferreira, María Luján; An insight on acyl migration in solvent-free ethanolysis of model triglycerides using Novozym 435; Elsevier Science; Journal of Biotechnology; 220; 12-1-2016; 92-99
Compartir
Altmétricas