Mostrar el registro sencillo del ítem

dc.contributor.author
Brandolin, Adriana  
dc.contributor.author
Balbueno, Ayslane Assini  
dc.contributor.author
Asteasuain, Mariano  
dc.date.available
2017-10-23T19:04:22Z  
dc.date.issued
2016-07-30  
dc.identifier.citation
Brandolin, Adriana; Balbueno, Ayslane Assini; Asteasuain, Mariano; Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains; Elsevier; Computers and Chemical Engineering; 94; 30-7-2016; 272-286  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/26932  
dc.description.abstract
The 2D probability generating function technique is a powerfulmethod for modeling bivariate distributions of polymer properties. It isbased on the transformation of bivariate population balance equationsusing 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. A key step of this method is the inversion of the pgf transforms. Available numerical inversion methods yield excellent results for pgf transforms of distributions with independent dimensions of similar orders of magnitude.However, numerical problems are found for 2D distributions in which the independent dimensions have very different range of values, such as the molecular weight distribution-branching distribution in branched polymers. In this work, two new 2D pgf inversion methods are developed,which regard the pgf as a complex variable. The superior accuracy ofthese new methods allows constructing a 2D inversion technique suitablefor any type of bivariate distribution.This enhances the capabilities of the 2D pgf modeling technique for simulation and optimization of polymer processes. An application example of the technique in a polymeric system of industrial interest is presented.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/embargoedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Modeling  
dc.subject
Polymerization  
dc.subject
Bivariate Distribution  
dc.subject
2d Probability Generating Function  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-10-09T15:34:57Z  
dc.journal.volume
94  
dc.journal.pagination
272-286  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.description.fil
Fil: Balbueno, Ayslane Assini. Universidade Federal de Viçosa; Brasil  
dc.description.fil
Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Computers and Chemical Engineering  
dc.rights.embargoDate
2018-08-01  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2016.07.017  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813541630237X