Mostrar el registro sencillo del ítem
dc.contributor.author
Brandolin, Adriana
dc.contributor.author
Balbueno, Ayslane Assini
dc.contributor.author
Asteasuain, Mariano
dc.date.available
2017-10-23T19:04:22Z
dc.date.issued
2016-07-30
dc.identifier.citation
Brandolin, Adriana; Balbueno, Ayslane Assini; Asteasuain, Mariano; Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains; Elsevier; Computers and Chemical Engineering; 94; 30-7-2016; 272-286
dc.identifier.issn
0098-1354
dc.identifier.uri
http://hdl.handle.net/11336/26932
dc.description.abstract
The 2D probability generating function technique is a powerfulmethod for modeling bivariate distributions of polymer properties. It isbased on the transformation of bivariate population balance equationsusing 2D probability generating functions (pgf) and a posteriori recovery of the distribution from the transform domain by numerical inversion. A key step of this method is the inversion of the pgf transforms. Available numerical inversion methods yield excellent results for pgf transforms of distributions with independent dimensions of similar orders of magnitude.However, numerical problems are found for 2D distributions in which the independent dimensions have very different range of values, such as the molecular weight distribution-branching distribution in branched polymers. In this work, two new 2D pgf inversion methods are developed,which regard the pgf as a complex variable. The superior accuracy ofthese new methods allows constructing a 2D inversion technique suitablefor any type of bivariate distribution.This enhances the capabilities of the 2D pgf modeling technique for simulation and optimization of polymer processes. An application example of the technique in a polymeric system of industrial interest is presented.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Modeling
dc.subject
Polymerization
dc.subject
Bivariate Distribution
dc.subject
2d Probability Generating Function
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Improved numerical inversion methods for the recovery of bivariate distributions of polymer properties from 2D probability generating function domains
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-10-09T15:34:57Z
dc.journal.volume
94
dc.journal.pagination
272-286
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.description.fil
Fil: Balbueno, Ayslane Assini. Universidade Federal de Viçosa; Brasil
dc.description.fil
Fil: Asteasuain, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Computers and Chemical Engineering
dc.rights.embargoDate
2018-08-01
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2016.07.017
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813541630237X
Archivos asociados