Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Compare computer visions algorithms for estimate 6DoF cameras pose

D'amato, Juan PabloIcon
Tipo del evento: Workshop
Nombre del evento: 11th Workshop on Engineering Applications
Fecha del evento: 23/10/2024
Institución Organizadora: Universidad Libre; Universidad Nacional de Colombia; Universidad Distrital Francisco José de Caldas; Universidad Externado de Colombia;
Título del Libro: Applied Computer Sciences in Engineering: 11th Workshop on Engineering Applications
Editorial: Springer
ISSN: 1865-0929
e-ISSN: 1865-0937
ISBN: 978-3-031-74594-2
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Object tracking is a fundamental algorithm in robotics and variousother fields that involves estimating real world coordinates of objects from images.To achieve this, it is necessary to accurately determine the location and orientation of the capturing cameras. Typically, this process, known as “camera poseestimation,” has been manually performed and requires a meticulous calibrationprocedure. In this paper, we introduce a pipeline designed to estimate the camerapose for all available cameras based on different methods, that estimates objectcamera distance. The first method utilizes well-known tags that must be positionedin places visible from all cameras. The second approach is semi-automatic methodthat detect people moving within a scene and estimate 3D coordinates. The thirdalgorithm aims for full automation, computing depth maps derived from a singleimage. All these methods generate a cloud point in camera space used as input byan optimization algorithm that compute camera poses based on a metric that minimize a re-projection function. Finally, the entire process and some experimentalcases are presented.
Palabras clave: Computer vision , Camera pose , Convolutional models
Ver el registro completo
 
Archivos asociados
Tamaño: 1.552Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/269296
URL: https://link.springer.com/chapter/10.1007/978-3-031-74595-9_19
DOI: http://dx.doi.org/10.1007/978-3-031-74595-9_19
Colecciones
Eventos(CCT - TANDIL)
Eventos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Compare computer visions algorithms for estimate 6DoF cameras pose; 11th Workshop on Engineering Applications; Barranquilla; Colombia; 2024; 208-219
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES