Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimal sensor network upgrade for fault detection using principal component analysis

Rodriguez Aguilar, Leandro Pedro FaustinoIcon ; Cedeño Viteri, Marco VinicioIcon ; Sanchez, Mabel CristinaIcon
Fecha de publicación: 11/02/2016
Editorial: American Chemical Society
Revista: Industrial & Engineering Chemical Research
ISSN: 0888-5885
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

The efficiency of a fault monitoring system critically depends on the structure of the plant instrumentation system. For processes monitored using principal component analysis, the multivariate statistical technique most used for fault diagnosis in industry, an existing strategy aims at selecting the set of instruments that satisfies the detection of a given set of faults at minimum cost. It is based on the minimum fault magnitude concept. Because that procedure discards lower-cost feasible solutions, in this work, a new optimal selection methodology is proposed whose constraints are straightaway defined in terms of the principal component analysis’s statistics. To solve the optimization problem, a level traversal search with cutting criteria is enhanced taking into account that the fault observability is a necessary condition for fault detection when statistical monitoring techniques are applied. Furthermore, observability and detection degree concepts are defined and considered as constraints of the optimization problems to devise robust sensor structures, which are able to detect a set of key faults under the presence of failed sensors or outliers. Application results of the new strategy to a case study taken from the literature are provided.
Palabras clave: Fault Diagnosis , Multivariate Statistical Process Control
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.130Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/26927
URL: http://pubs.acs.org/doi/abs/10.1021/acs.iecr.5b02599
DOI: http://dx.doi.org/10.1021/acs.iecr.5b02599
Colecciones
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Rodriguez Aguilar, Leandro Pedro Faustino; Cedeño Viteri, Marco Vinicio; Sanchez, Mabel Cristina; Optimal sensor network upgrade for fault detection using principal component analysis; American Chemical Society; Industrial & Engineering Chemical Research; 55; 8; 11-2-2016; 2359-2370
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES