Mostrar el registro sencillo del ítem
dc.contributor.author
Montagna, Georgina Nuri
dc.contributor.author
Buscaglia, Carlos Andres
dc.contributor.author
Münter, Sylvia
dc.contributor.author
Goosmann, Christian
dc.contributor.author
Frischknecht, Friedrich
dc.contributor.author
Brinkmann, Volker
dc.contributor.author
Matuschewski, Kai
dc.date.available
2025-08-18T13:15:47Z
dc.date.issued
2012-01
dc.identifier.citation
Montagna, Georgina Nuri; Buscaglia, Carlos Andres; Münter, Sylvia; Goosmann, Christian; Frischknecht, Friedrich; et al.; Critical Role for Heat Shock Protein 20 (HSP20) in Migration of Malarial Sporozoites; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 287; 4; 1-2012; 2410-2422
dc.identifier.issn
0021-9258
dc.identifier.uri
http://hdl.handle.net/11336/269123
dc.description.abstract
Plasmodium sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory proteins appear to be encoded in the Plasmodium genome. Small heat shock proteins have been associated with cytoskeleton modulation in various biological processes. In this study, we identify HSP20 as a novel player in Plasmodium motility and provide molecular genetics evidence for a critical role of a small heat shock protein in cell traction and motility. We demonstrate that HSP20 ablation profoundly affects sporozoite-substrate adhesion, which translates into aberrant speed and directionality in vitro. Loss of HSP20 function impairs migration in the host, an important sporozoite trait required to find a blood vessel and reach the liver after being deposited in the skin by the mosquito. Our study also shows that fast locomotion of sporozoites is crucial during natural malaria transmission.sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory proteins appear to be encoded in the Plasmodium genome. Small heat shock proteins have been associated with cytoskeleton modulation in various biological processes. In this study, we identify HSP20 as a novel player in Plasmodium motility and provide molecular genetics evidence for a critical role of a small heat shock protein in cell traction and motility. We demonstrate that HSP20 ablation profoundly affects sporozoite-substrate adhesion, which translates into aberrant speed and directionality in vitro. Loss of HSP20 function impairs migration in the host, an important sporozoite trait required to find a blood vessel and reach the liver after being deposited in the skin by the mosquito. Our study also shows that fast locomotion of sporozoites is crucial during natural malaria transmission.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Society for Biochemistry and Molecular Biology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Plasmodium
dc.subject
Sporozoite
dc.subject
Motility
dc.subject
Hsp20
dc.subject.classification
Bioquímica y Biología Molecular
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Critical Role for Heat Shock Protein 20 (HSP20) in Migration of Malarial Sporozoites
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-08-13T13:22:26Z
dc.journal.volume
287
dc.journal.number
4
dc.journal.pagination
2410-2422
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Bethesda
dc.description.fil
Fil: Montagna, Georgina Nuri. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina. Max Planck Institute for Infection Biology; Alemania
dc.description.fil
Fil: Buscaglia, Carlos Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
dc.description.fil
Fil: Münter, Sylvia. Ruprecht Karls Universitat Heidelberg; Alemania
dc.description.fil
Fil: Goosmann, Christian. Max Planck Institute for Infection Biology; Alemania
dc.description.fil
Fil: Frischknecht, Friedrich. Ruprecht Karls Universitat Heidelberg; Alemania
dc.description.fil
Fil: Brinkmann, Volker. Max Planck Institute for Infection Biology; Alemania
dc.description.fil
Fil: Matuschewski, Kai. Max Planck Institute for Infection Biology; Alemania
dc.journal.title
Journal of Biological Chemistry (online)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021925820532031
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1074/jbc.M111.302109
Archivos asociados