Mostrar el registro sencillo del ítem

dc.contributor.author
Lauret, Jorge Ruben  
dc.date.available
2025-08-18T13:04:48Z  
dc.date.issued
2012-01  
dc.identifier.citation
Lauret, Jorge Ruben; Convergence of homogeneous manifolds; Oxford University Press; Journal of the London Mathematical Society; 86; 3; 1-2012; 701-727  
dc.identifier.issn
0024-6107  
dc.identifier.uri
http://hdl.handle.net/11336/269113  
dc.description.abstract
We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Convergence  
dc.subject
Homogeneous manifolds  
dc.subject
Lie algebras  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Convergence of homogeneous manifolds  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-08T14:13:17Z  
dc.journal.volume
86  
dc.journal.number
3  
dc.journal.pagination
701-727  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Journal of the London Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jds023  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1112/jlms/jds023