Mostrar el registro sencillo del ítem

dc.contributor.author
Delle Donne, Diego Andrés  
dc.contributor.author
Escalante, Mariana Silvina  
dc.contributor.author
Ugarte, María Elisa  
dc.date.available
2025-08-12T15:11:41Z  
dc.date.issued
2024-05  
dc.identifier.citation
Delle Donne, Diego Andrés; Escalante, Mariana Silvina; Ugarte, María Elisa; On the Complexity of the Minimum Chromatic Violation Problem; Springer; Lecture Notes in Computer Science; 14594; 5-2024; 152-162  
dc.identifier.issn
0302-9743  
dc.identifier.uri
http://hdl.handle.net/11336/268767  
dc.description.abstract
In this paper, we consider a generalization of the classical vertex coloring problem of a graph, where the edge set of the graph is partitioned into strong and weak edges; the endpoints of a weak edge can be assigned to the same color and the minimum chromatic violation problem (MCVP) asks for a coloring of the graph minimizing the number of weak edges having its endpoints assigned to the same color. Previous works in the literature on MCVP focus on defining integer programming formulations and performing polyhedral studies on the associated polytopes but, to the best of our knowledge, very few computational complexity studies exist for MCVP. In this work, we focus on the computational complexity of this problem over several graph families such as interval and unit interval graphs, among others. We show that MCVP is NP-hard for general graphs and it remains NP-hard when the graph induced by the strong edges is unit interval or distance hereditary. On the other side, we provide a polynomial algorithm that properly solves MCVP when the graph is a unit interval graph without triangles with two or more weak edges.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHROMATIC VIOLATION  
dc.subject
GRAPH COLORING  
dc.subject
COMPLEXITY  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the Complexity of the Minimum Chromatic Violation Problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-08T13:49:31Z  
dc.journal.volume
14594  
dc.journal.pagination
152-162  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Delle Donne, Diego Andrés. L'Ecole Supérieure des Sciences Economiques et Commerciales; Francia  
dc.description.fil
Fil: Escalante, Mariana Silvina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Ugarte, María Elisa. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.journal.title
Lecture Notes in Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/978-3-031-60924-4_12  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-031-60924-4_12