Mostrar el registro sencillo del ítem

dc.contributor.author
Cabrera Molina, María de Los Ángeles  
dc.contributor.author
Ivanoff, Brenda Desireé  
dc.contributor.author
Lago Huvelle, María Amparo  
dc.contributor.author
Soler Illia, Galo Juan de Avila Arturo  
dc.contributor.author
Contreras, Cintia Belén  
dc.date.available
2025-08-12T11:24:16Z  
dc.date.issued
2025-06  
dc.identifier.citation
Cabrera Molina, María de Los Ángeles; Ivanoff, Brenda Desireé; Lago Huvelle, María Amparo; Soler Illia, Galo Juan de Avila Arturo; Contreras, Cintia Belén; Temperature and pH-Responsive Nanocarrier for Paclitaxel Controlled Release Based on P(NIPAM- co -HEMA)-Modified Silica Microgel; American Chemical Society; ACS Applied Polymer Materials; 7; 13; 6-2025; 8396-8410  
dc.identifier.issn
2637-6105  
dc.identifier.uri
http://hdl.handle.net/11336/268701  
dc.description.abstract
Paclitaxel is an important chemotherapeutic drug but is not well tolerated and related to serious adverse drug effects. In the past decades, many nanoparticle-based drug delivery systems, including liposomes, polymeric micelles, dendrimers, and inorganic nanoparticles, have been developed to improve drug’s efficacy, transport and release. In this sense, chemotherapeutic nanomedicines have been successfully applied to cancer therapy, however the antitumor effect of these nano-formulations has been found no significant improvement when compared with common treatments. Here, we report on the design and synthesis of a smart hybrid core-shell nanocarrier (NC) for the loading, transport and specific release of Paclitaxel under well-defined pH and temperature-conditions. The NC was prepared by a sequential method that produced an integrated nanosystem composed of a silica core surrounded by a Poly(N-isopropylacrylamide-co-2-Hydroxyethyl methacrylate) biocompatible microgel, P(NIPAM-co-HEMA). We demonstrate by DLS studies that these core-shell NC present a transduction from both stimuli to a mechanical shrinkage of the polymeric shell, which changes size or aggregation behavior triggered by temperature and pH alterations. This dual stimulus response can be synthetically tuned by controlling the molar ratio between monomers. Besides, the NC was designed to host and carry the hydrophobic drug Paclitaxel. Specific pH and temperature changes lead to the shrinkage of the external microgel polymer layer of the NC, and consequently Paclitaxel can be released by external control. Overall, these results demonstrate that Paclitaxel-loaded NC are a promising platform to build externally controlled drug delivery systems for environment-triggered therapy. We successfully extended this concept to in vitro studies using B16-F10 cells. Paclitaxel-loaded NC induced tumor cell death, and our findings revealed the “intelligence” of the developed NC in carrying and releasing the cargo in the context of a tumoral microenvironment. This proof-of-principle opens the path to hybrid nanocarrier technologies that could significantly reduce various side effects caused by naked drug molecules in patients who are receiving regular chemotherapy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
nanocarriers  
dc.subject
integrated nanosystems  
dc.subject
smart hybrid materials  
dc.subject
dual stimulus microgel  
dc.subject
remote controlled drug release  
dc.subject
responsive polymers  
dc.subject
paclitaxel  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Temperature and pH-Responsive Nanocarrier for Paclitaxel Controlled Release Based on P(NIPAM- co -HEMA)-Modified Silica Microgel  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-11T14:10:32Z  
dc.journal.volume
7  
dc.journal.number
13  
dc.journal.pagination
8396-8410  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Cabrera Molina, María de Los Ángeles. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ivanoff, Brenda Desireé. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina  
dc.description.fil
Fil: Lago Huvelle, María Amparo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina  
dc.description.fil
Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina  
dc.description.fil
Fil: Contreras, Cintia Belén. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
ACS Applied Polymer Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsapm.5c00648  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsapm.5c00648