Mostrar el registro sencillo del ítem

dc.contributor.author
Delvaux, Steven  
dc.contributor.author
Kuijlaars, Arno B. J.  
dc.contributor.author
Román, Pablo Manuel  
dc.contributor.author
Zhang, Lun  
dc.date.available
2025-08-12T11:20:55Z  
dc.date.issued
2012-08  
dc.identifier.citation
Delvaux, Steven; Kuijlaars, Arno B. J.; Román, Pablo Manuel; Zhang, Lun; Non-intersecting squared Bessel paths with one positive starting and ending point; Springer; Journal d'Analyse Mathématique; 118; 1; 8-2012; 105-159  
dc.identifier.issn
0021-7670  
dc.identifier.uri
http://hdl.handle.net/11336/268693  
dc.description.abstract
We consider a model of n non-intersecting squared Bessel processes with one starting point a > 0 at time t = 0 and one ending point b > 0 at time t = T. After proper scaling, the paths fill out a region in the tx-plane. The region may come to the hard edge at 0 or may not, depending on the value of the product ab. We formulate a vector equilibrium problem for this model, which is defined for three measures, with upper constraints on the first and third measures and an external field on the second measure. It is shown that the limiting mean distribution of the paths at time t is given by the second component of the vector that minimizes this vector equilibrium problem. The proof is based on a steepest descent analysis for a 4 × 4 matrix-valued Riemann-Hilbert problem which characterizes the correlation kernel of the paths at time t. We also discuss the precise locations of the phase transitions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Non-intersecting Bessel squared paths  
dc.subject
Multiple orthogonal polynomials  
dc.subject
Phase transitions  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Non-intersecting squared Bessel paths with one positive starting and ending point  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-05T10:44:27Z  
dc.journal.volume
118  
dc.journal.number
1  
dc.journal.pagination
105-159  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Delvaux, Steven. Katholikie Universiteit Leuven; Bélgica  
dc.description.fil
Fil: Kuijlaars, Arno B. J.. Katholikie Universiteit Leuven; Bélgica  
dc.description.fil
Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Katholikie Universiteit Leuven; Bélgica  
dc.description.fil
Fil: Zhang, Lun. Katholikie Universiteit Leuven; Bélgica  
dc.journal.title
Journal d'Analyse Mathématique  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-012-0031-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11854-012-0031-5