Mostrar el registro sencillo del ítem

dc.contributor.author
Delle Donne, Diego Andrés  
dc.contributor.author
Escalante, Mariana Silvina  
dc.contributor.author
Fekete, Pablo Gabriel  
dc.contributor.author
Moroni, Lucía  
dc.date.available
2025-08-12T10:51:53Z  
dc.date.issued
2024-05  
dc.identifier.citation
Delle Donne, Diego Andrés; Escalante, Mariana Silvina; Fekete, Pablo Gabriel; Moroni, Lucía; 1-Persistency of the Clique Relaxation of the Stable Set Polytope; springer; Lecture Notes in Computer Science; 14594; 5-2024; 71-84  
dc.identifier.issn
0302-9743  
dc.identifier.uri
http://hdl.handle.net/11336/268675  
dc.description.abstract
A polytope P ⊂ [0, 1]n is said to have the persistency property if for every vector c ∈ Rn and every c-optimal point x ∈ P , thereexists a c-optimal integer point y ∈ P ∩ {0, 1}n such that xi = yi foreach i ∈ {1, . . . , n} with xi ∈ {0, 1}. In this paper, we consider a relaxation of the persistency property, called 1-persistency, over the cliquerelaxation of the stable set polytope in graphs. In particular, we studythe family Q of graphs whose clique relaxation of the stable set polytopehas 1-persistency. The main objective of this contribution is to analyzeforbidden structures for a given graph to belong to Q. The graphs givenby these structures are denoted here as mnQ. On one hand, we providesufficient conditions for a graph to belong to Q, and identify severalgraph classes of this family. On the other hand, we give two differentinfinite families of forbidden minimal structures for this class of graphs.We conclude the paper by suggesting an interesting future line of workabout the persistency-preservation property of valid inequalities and itspotential practical applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
STABLE SET POLYTOPE  
dc.subject
PERSISTENCY  
dc.subject
INTEGER PROGRAMMING  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
1-Persistency of the Clique Relaxation of the Stable Set Polytope  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-08T13:49:35Z  
dc.journal.volume
14594  
dc.journal.pagination
71-84  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Delle Donne, Diego Andrés. L'Ecole Supérieure des Sciences Economiques et Commerciales; Francia  
dc.description.fil
Fil: Escalante, Mariana Silvina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Fekete, Pablo Gabriel. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Moroni, Lucía. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.journal.title
Lecture Notes in Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/978-3-031-60924-4_6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-031-60924-4_6