Artículo
A projected Weiszfeld algorithm for the box-constrained Weber location problem
Fecha de publicación:
11/2011
Editorial:
Elsevier Science Inc.
Revista:
Applied Mathematics and Computation
ISSN:
0096-3003
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The Weber problem consists of finding a point that minimizes the weighted sum of distances from m points that are not collinear. An application that motivated this problem is the optimal location of facilities in the 2-dimensional case. A classical method to solve the Weber problem, proposed by Weiszfeld in 1937, is based on a fixed-point iteration. In this work we generalize the Weber location problem considering box constraints. We propose a fixed-point iteration with projections on the constraints and demonstrate descending properties. It is also proved that the limit of the sequence generated by the method is a feasible point and satisfiesthe KKT optimality conditions. Numerical experiments are presented to validate the theoretical results.
Palabras clave:
WEBER PROBLEM
,
BOX- CONSTRAINTS
,
FIXED-POINT ITERATION
,
LOCATION PROBLEMS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Pilotta, Elvio Angel; Torres, German Ariel; A projected Weiszfeld algorithm for the box-constrained Weber location problem; Elsevier Science Inc.; Applied Mathematics and Computation; 218; 6; 11-2011; 2932-2943
Compartir
Altmétricas