Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Experimental and numerical study of the role of crystallographic texture on the formability of an electro-galvanized steel sheet

Signorelli, Javier WalterIcon ; Serenelli, Mariano JavierIcon ; Bertinetti, María de los Ángeles
Fecha de publicación: 06/2012
Editorial: Elsevier Science SA
Revista: Journal Of Materials Processing Technology
ISSN: 0924-0136
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de los Materiales

Resumen

In this work, the influence of plastic anisotropy on forming-limit strains for a drawing-quality steel sheet was investigated. For this purpose, hourglass-type samples, taken at 0◦, 45◦ and 90◦ with respect to the sheet rolling direction were tested with a typical punch and die fixturing. Numerical simulations were carried out in order to validate two viscoplastic (VP) polycrystalline models, self-consistent (SC) and fullconstraint Taylor-type (FC), in conjunction with the Marciniak and Kuczynski (MK) localization approach. The observed shift to the right in the minimum of the forming limit diagram (FLD), inherent to Nakazima test, was taken into account in the simulations. Keeping the set of adjustable parameters to a minimum in the calibration of the viscoplastic polycrystal model, only the material’s initial texture and a power law fit to the tensile data needed to be measured. Without other adjustments to either model, MK-VPSC gives realistic predictions over the entire FLD, while the MK-FC predictions only follow the measured limit curve on the tensile side of plane strain. In the positive biaxial quadrant of the FLD, MK-FC predicts unrealistic high limit values. It was found that, despite these extremely high limit values, the similarity in the measured limit strains for the three sample orientations is captured by both models. However, a consistency in the MK-VPSC predictions indicates that this model seems to be a more suitable tool for describing the role of crystallographic texture on the sheet metal forming processes. sheet rolling direction were tested with a typical punch and die fixturing. Numerical simulations were carried out in order to validate two viscoplastic (VP) polycrystalline models, self-consistent (SC) and fullconstraint Taylor-type (FC), in conjunction with the Marciniak and Kuczynski (MK) localization approach. The observed shift to the right in the minimum of the forming limit diagram (FLD), inherent to Nakazima test, was taken into account in the simulations. Keeping the set of adjustable parameters to a minimum in the calibration of the viscoplastic polycrystal model, only the material’s initial texture and a power law fit to the tensile data needed to be measured. Without other adjustments to either model, MK-VPSC gives realistic predictions over the entire FLD, while the MK-FC predictions only follow the measured limit curve on the tensile side of plane strain. In the positive biaxial quadrant of the FLD, MK-FC predicts unrealistic high limit values. It was found that, despite these extremely high limit values, the similarity in the measured limit strains for the three sample orientations is captured by both models. However, a consistency in the MK-VPSC predictions indicates that this model seems to be a more suitable tool for describing the role of crystallographic texture on the sheet metal forming processes. sheet rolling direction were tested with a typical punch and die fixturing. Numerical simulations were carried out in order to validate two viscoplastic (VP) polycrystalline models, self-consistent (SC) and fullconstraint Taylor-type (FC), in conjunction with the Marciniak and Kuczynski (MK) localization approach. The observed shift to the right in the minimum of the forming limit diagram (FLD), inherent to Nakazima test, was taken into account in the simulations. Keeping the set of adjustable parameters to a minimum in the calibration of the viscoplastic polycrystal model, only the material’s initial texture and a power law fit to the tensile data needed to be measured. Without other adjustments to either model, MK-VPSC gives realistic predictions over the entire FLD, while the MK-FC predictions only follow the measured limit curve on the tensile side of plane strain. In the positive biaxial quadrant of the FLD, MK-FC predicts unrealistic high limit values. It was found that, despite these extremely high limit values, the similarity in the measured limit strains for the three sample orientations is captured by both models. However, a consistency in the MK-VPSC predictions indicates that this model seems to be a more suitable tool for describing the role of crystallographic texture on the sheet metal forming processes. ◦, 45◦ and 90◦ with respect to the sheet rolling direction were tested with a typical punch and die fixturing. Numerical simulations were carried out in order to validate two viscoplastic (VP) polycrystalline models, self-consistent (SC) and fullconstraint Taylor-type (FC), in conjunction with the Marciniak and Kuczynski (MK) localization approach. The observed shift to the right in the minimum of the forming limit diagram (FLD), inherent to Nakazima test, was taken into account in the simulations. Keeping the set of adjustable parameters to a minimum in the calibration of the viscoplastic polycrystal model, only the material’s initial texture and a power law fit to the tensile data needed to be measured. Without other adjustments to either model, MK-VPSC gives realistic predictions over the entire FLD, while the MK-FC predictions only follow the measured limit curve on the tensile side of plane strain. In the positive biaxial quadrant of the FLD, MK-FC predicts unrealistic high limit values. It was found that, despite these extremely high limit values, the similarity in the measured limit strains for the three sample orientations is captured by both models. However, a consistency in the MK-VPSC predictions indicates that this model seems to be a more suitable tool for describing the role of crystallographic texture on the sheet metal forming processes.
Palabras clave: Forming Limit , Anisotropy , Texture , MK-VPSC
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.256Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/268483
URL: https://www.sciencedirect.com/science/article/abs/pii/S0924013612000489
DOI: http://dx.doi.org/10.1016/j.jmatprotec.2012.01.020
Colecciones
Articulos(IFIR)
Articulos de INST.DE FISICA DE ROSARIO (I)
Citación
Signorelli, Javier Walter; Serenelli, Mariano Javier; Bertinetti, María de los Ángeles; Experimental and numerical study of the role of crystallographic texture on the formability of an electro-galvanized steel sheet; Elsevier Science SA; Journal Of Materials Processing Technology; 212; 6; 6-2012; 1367-1376
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES