Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Bayesian mapping of quantitative trait loci (QTL) controlling soybean cyst nematode resistant

Arriagada, Osvin; Mora, Freddy; Dellarossa, Joaquín C.; Ferreira, Marcia F. S.; Cervigni, Gerardo Domingo LucioIcon ; Schuster, Ivan
Fecha de publicación: 04/2012
Editorial: Springer
Revista: Euphytica
ISSN: 0014-2336
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

The soybean cyst nematode (SCN) is one of the most economically important pathogens of soybean. Molecular mapping of quantitative trait loci (QTL) for resistance to SCN is a proven useful strategy in order to assist in the development of resistant soybean cultivars. In the present study, a Bayesian modeling approach was performed to map QTL controlling genetic resistance to SCN races 3 and 14. For this purpose, a population of recombinant inbred lines derived from the cross between line Y23 (susceptible) and cv. Hartwig (resistant) was used. A total of 144 microsatellites markers (Simple Sequence Repeats) were selected and synthesized for mapping purpose. Posterior marginal parameter distributions were computed using the Reversible Jump Markov Chain Monte Carlo (RJ-MCMC) algorithm. It was determined the existence of four QTLs on three linkage groups (LG); that is LG A2 for race 3, LG C2 for race 14, and LG G for both races. The estimates of posterior modes of the heritability were 0.038 and 0.53 for the LGs A2 and G respectively (race 3). For the race 14 the posterior modes of the heritability were 0.044 and 0.05 for the LGs C2 and G. The identified QTLs explained about 57 and 9 % of the total phenotypic variance, for the races 3 and 14, respectively. These results confirm the effectiveness of the Bayesian method to map QTL controlling resistance to SCN in soybean. Accordingly, integrating QTL mapping with Bayesian methods will enable response to selection for quantitative traits of interest in soybean to be improved.
Palabras clave: Linkage group , Marker-asisted selection , MCMC algorithm , RIL
Ver el registro completo
 
Archivos asociados
Tamaño: 473.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/268428
URL: https://link.springer.com/article/10.1007/s10681-012-0696-y
DOI: http://dx.doi.org/10.1007/s10681-012-0696-y
Colecciones
Articulos(CEFOBI)
Articulos de CENTRO DE EST.FOTOSINTETICOS Y BIOQUIMICOS (I)
Citación
Arriagada, Osvin; Mora, Freddy; Dellarossa, Joaquín C.; Ferreira, Marcia F. S.; Cervigni, Gerardo Domingo Lucio; et al.; Bayesian mapping of quantitative trait loci (QTL) controlling soybean cyst nematode resistant; Springer; Euphytica; 186; 3; 4-2012; 907-917
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES