Artículo
A 2-D model of Rayleigh instability in capillary tubes–surfactant effects
Fecha de publicación:
05/2004
Editorial:
Elsevier
Revista:
International Journal Of Multiphase Flow
ISSN:
0301-9322
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The Rayleigh instability of stagnant liquid films lining the interior of capillary tubes is analyzed with the aid of a 2-D free surface flow model; this axisymmetric model is previously validated using already published theoretical and experimental results. The Galerkin-finite element method is used to transform the complete set of governing equations and boundary conditions into a discrete set, which is then simultaneously solved at each time step by Newton’s method. Predictions of well known simplified models represented by nonlinear evolution equations derived on the one-dimensional flow assumption are compared with those obtained from the present one. The comparisons are made for pure liquids and also for liquids contaminated with insoluble surfactants; they show that the simpler models represent the free surface evolution reasonable well. However, the 1-D models generally underestimate the time needed to complete the unstable process that ends––if the film is thick enough––when the inner gas phase becomes disconnected due to the formation of liquid lenses regularly spaced; these discrepancies become larger when surface active agents are present. Surfactant effects and the wealth of information produced by the 2-D model are both evidenced through sample results presented at the end of the paper.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Campana, Diego Martin; Di Paolo, José; Saita, Fernando Adolfo; A 2-D model of Rayleigh instability in capillary tubes–surfactant effects; Elsevier; International Journal Of Multiphase Flow; 30; 5; 5-2004; 431-454
Compartir
Altmétricas