Artículo
Spectrally distinguishing symmetric spaces II
Fecha de publicación:
07/06/2025
Editorial:
PublicaUEX Editorial
Revista:
Extracta Mathematicae
ISSN:
0213-8743
e-ISSN:
2605-5686
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The action of the subgroup G2 of SO(7) (resp. Spin(7) of SO(8)) on the Grassmannian space M = SO(7)/(SO(5)×SO(2)) (resp. M = SO(8)/(SO(5)×SO(3)) ) is still transitive. We prove that the spectrum (i.e. the collection of eigenvalues of its Laplace-Beltrami operator) of a symmetric metric g0 on M coincides with the spectrum of a G2-invariant (resp. Spin(7)-invariant) metric g on M only if g0 and g are isometric. As a consequence, each non-flat compact irreducible symmetric space of non-group type is spectrally unique among the family of all currently known homogeneous metrics on its underlying differentiable manifold.
Palabras clave:
SPECTRAL UNIQUENESS
,
FIRST EIGENVALUE
,
HOMOGENEOUS METRICS
,
NU-STABILITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Lauret, Emilio Agustin; Méndez Rodríguez, Juan Sebastián; Spectrally distinguishing symmetric spaces II; PublicaUEX Editorial; Extracta Mathematicae; 40; 1; 7-6-2025; 91-120
Compartir
Altmétricas