Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Practical foundations of machine learning for addiction research. Part I. Methods and techniques

Cresta Morgado, Pablo; Carusso, MartínIcon ; Alonso Alemany, Laura; Acion, LauraIcon
Fecha de publicación: 04/2022
Editorial: Taylor & Francis
Revista: The American Journal of Drug and Alcohol Abuse
ISSN: 0095-2990
e-ISSN: 1097-9891
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Drogadicción

Resumen

Machine learning assembles a broad set of methods and techniques to solve a wide range of problems, such as identifying individuals with substance use disorders (SUD), finding patterns in neuroimages, understanding SUD prognostic factors and their association, or determining addiction genetic underpinnings. However, the addiction research field underuses machine learning. This two-part narrative review focuses on machine learning tools and concepts, providing an introductory insight into their capabilities to facilitate their understanding and acquisition by addiction researchers. This first part presents supervised and unsupervised methods such as linear models, naive Bayes, support vector machines, artificial neural networks, and k-means. We illustrate each technique with examples of its use in current addiction research. We also present some open-source programming tools and methodological good practices that facilitate using these techniques. Throughout this work, we emphasize a continuum between applied statistics and machine learning, we show their commonalities, and provide sources for further reading to deepen the understanding of these methods. This two-part review is a primer for the next generation of addiction researchers incorporating machine learning in their projects. Researchers will find a bridge between applied statistics and machine learning, ways to expand their analytical toolkit, recommendations to incorporate well-established good practices in addiction data analysis (e.g., stating the rationale for using newer analytical tools, calculating sample size, improving reproducibility), and the vocabulary to enhance collaboration between researchers who do not conduct data analyses and those who do.
Palabras clave: MACHINE LEARNING , DATA SCIENCE , ARTIFICIAL INTELLIGENCE
Ver el registro completo
 
Archivos asociados
Tamaño: 281.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267874
URL: https://www.tandfonline.com/doi/full/10.1080/00952990.2021.1995739
DOI: http://dx.doi.org/10.1080/00952990.2021.1995739
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Citación
Cresta Morgado, Pablo; Carusso, Martín; Alonso Alemany, Laura; Acion, Laura; Practical foundations of machine learning for addiction research. Part I. Methods and techniques; Taylor & Francis; The American Journal of Drug and Alcohol Abuse; 48; 3; 4-2022; 260-271
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES