Mostrar el registro sencillo del ítem
dc.contributor.author
Meidan, Daphne
dc.contributor.author
Li, Qinyi
dc.contributor.author
Cuevas, Carlos A.
dc.contributor.author
Doney, Scott C.
dc.contributor.author
Fernandez, Rafael Pedro

dc.contributor.author
van Herpen, Maarten M. J. W.
dc.contributor.author
Johnson, Matthew S.
dc.contributor.author
Kinnison, Douglas E.

dc.contributor.author
Li, Longlei
dc.contributor.author
Hamilton, Douglas S.
dc.contributor.author
Saiz López, Alfonso

dc.contributor.author
Hess, Peter
dc.contributor.author
Mahowald, Natalie M.
dc.date.available
2025-08-04T12:32:23Z
dc.date.issued
2024-04
dc.identifier.citation
Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; et al.; Evaluating the potential of iron-based interventions in methane reduction and climate mitigation; IOP Publishing; Environmental Research Letters; 19; 5; 4-2024; 1-14
dc.identifier.issn
1748-9326
dc.identifier.uri
http://hdl.handle.net/11336/267858
dc.description.abstract
Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Climate Mitigation
dc.subject
Methane reduction
dc.subject
Iron-induced emissions
dc.subject
Chlorine chemistry
dc.subject.classification
Investigación Climatológica

dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-28T11:42:08Z
dc.journal.volume
19
dc.journal.number
5
dc.journal.pagination
1-14
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Meidan, Daphne. Cornell University; Estados Unidos
dc.description.fil
Fil: Li, Qinyi. Shandong University; China
dc.description.fil
Fil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Doney, Scott C.. University of Virginia; Estados Unidos
dc.description.fil
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
dc.description.fil
Fil: van Herpen, Maarten M. J. W.. Acacia Impact Innovation; Países Bajos
dc.description.fil
Fil: Johnson, Matthew S.. Universidad de Copenhagen; Dinamarca
dc.description.fil
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
dc.description.fil
Fil: Li, Longlei. Cornell University; Estados Unidos
dc.description.fil
Fil: Hamilton, Douglas S.. North Carolina State University; Estados Unidos
dc.description.fil
Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Hess, Peter. Cornell University; Estados Unidos
dc.description.fil
Fil: Mahowald, Natalie M.. Cornell University; Estados Unidos
dc.journal.title
Environmental Research Letters

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-9326/ad3d72
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1748-9326/ad3d72
Archivos asociados