Mostrar el registro sencillo del ítem

dc.contributor.author
Molinari, Fabricio Nicolás  
dc.contributor.author
Mancuso, Maria A.  
dc.contributor.author
Bilbao, Emanuel  
dc.contributor.author
Giménez, Gustavo  
dc.contributor.author
Monsalve, Leandro Nicolas  
dc.date.available
2025-08-01T15:37:59Z  
dc.date.issued
2025-06  
dc.identifier.citation
Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-7  
dc.identifier.issn
2666-9781  
dc.identifier.uri
http://hdl.handle.net/11336/267759  
dc.description.abstract
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CONDUCTIVE NANOCOMPOSITE  
dc.subject
RESISTIVE SENSOR  
dc.subject
DOSIMETER  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-08-01T12:18:54Z  
dc.journal.volume
10  
dc.journal.pagination
1-7  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; Italia  
dc.description.fil
Fil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; Italia  
dc.description.fil
Fil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; Argentina  
dc.description.fil
Fil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; Argentina  
dc.description.fil
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina  
dc.journal.title
Nano Trends  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666978125000455  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nwnano.2025.100116