Mostrar el registro sencillo del ítem
dc.contributor.author
Molinari, Fabricio Nicolás
dc.contributor.author
Mancuso, Maria A.
dc.contributor.author
Bilbao, Emanuel
dc.contributor.author
Giménez, Gustavo
dc.contributor.author
Monsalve, Leandro Nicolas
dc.date.available
2025-08-01T15:37:59Z
dc.date.issued
2025-06
dc.identifier.citation
Molinari, Fabricio Nicolás; Mancuso, Maria A.; Bilbao, Emanuel; Giménez, Gustavo; Monsalve, Leandro Nicolas; A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60; Elsevier; Nano Trends; 10; 6-2025; 1-7
dc.identifier.issn
2666-9781
dc.identifier.uri
http://hdl.handle.net/11336/267759
dc.description.abstract
In this work electron radiation microdevices were fabricated and characterized. The microdevices consisted of aligned conductive electrospun fibers made of polycaprolactone loaded with multiwalled carbon nanotubes and C60 deposited onto gold interdigitated microelectrodes. They were capable of permanently increasing their conductivity upon exposure to electron beam irradiation from 0.02 pC μm-2 accelerated at 10 and 20 keV. This phenomenon could be explained due to the ability of C60 to trap and stabilize negative charges and thus contribute to the conductivity of the polymer composite. The microdevices achieved their maximum conductivity after an irradiation between 0.22 and 0.27 pC μm-2 and this maximum was dependent of the electron acceleration. Montecarlo simulations were performed to explain dependence as function of electron penetration in the polymer composite. Moreover, the microdevices irradiated at 20 keV maintained their final conductivity and the microdevices irradiated at 10 keV increased their final conductivity after 6 days from irradiation. C60 proved to act as highly efficient electron scavengers within the polymer composite and contribute to its conductivity, and the microdevices have potential application as beta radiation sensors.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
CONDUCTIVE NANOCOMPOSITE
dc.subject
RESISTIVE SENSOR
dc.subject
DOSIMETER
dc.subject.classification
Nano-materiales
dc.subject.classification
Nanotecnología
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A resistive electron irradiation microsensor made from conductive electrospun polycaprolactone fibers loaded with carbon nanotubes and fullerene C60
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-08-01T12:18:54Z
dc.journal.volume
10
dc.journal.pagination
1-7
dc.journal.pais
Países Bajos
dc.description.fil
Fil: Molinari, Fabricio Nicolás. Consiglio Nazionale delle Ricerche; Italia
dc.description.fil
Fil: Mancuso, Maria A.. Consiglio Nazionale delle Ricerche; Italia
dc.description.fil
Fil: Bilbao, Emanuel. Instituto Nacional de Tecnología Industrial; Argentina
dc.description.fil
Fil: Giménez, Gustavo. Instituto Nacional de Tecnología Industrial; Argentina
dc.description.fil
Fil: Monsalve, Leandro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; Argentina
dc.journal.title
Nano Trends
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2666978125000455
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nwnano.2025.100116
Archivos asociados