Mostrar el registro sencillo del ítem

dc.contributor.author
Mendez, Marta Patricia Alejandra  
dc.contributor.author
Mitnik, Dario Marcelo  
dc.contributor.author
Miraglia, Jorge Esteban  
dc.date.available
2025-07-31T15:58:23Z  
dc.date.issued
2018  
dc.identifier.citation
Mendez, Marta Patricia Alejandra; Mitnik, Dario Marcelo; Miraglia, Jorge Esteban; Local Effective Hartree-Fock Potentials Obtained by the Depurated Inversion Method; Academic Press; 76; 2018; 117-132  
dc.identifier.isbn
978-0-12-813002-5  
dc.identifier.uri
http://hdl.handle.net/11336/267630  
dc.description.abstract
In this work we show the results of a numerical experiment performed on the Hartree-Fock (HF) wave functions in order to understand the relationship between the positions of the orbital nodes and the inflection points (zeros of their second derivative). This analysis is equivalent to investigating the existence of a physical one-electron local potential representing the interactions between the electrons. We found that with successive improvements in the quality of the numerical methods, the nodes and the inflection points systematically become closer. When the nodes coincide exactly with the inflection points, the existence of an effective local potential would be proven. However, this requirement cannot be fulfilled unless an explicit constraint (missing in the standard method) is incorporated into the HF procedure. The depurated inversion method (DIM) was devised to obtain detailed nl-orbital potentials for atoms and molecules. The method is based on the inversion of Kohn-Sham-type equations, followed by a further careful optimization which eliminates singularities and also ensures the fulfillment of the appropriate boundary conditions. The orbitals resulting from these potentials have their internal inflection points located exactly at the nodes. In this way, the DIM can be employed to obtain effective potentials that accurately reproduce the HF orbitals.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Local Effective Potential  
dc.subject
Depurated Inversion Method  
dc.subject
Inverted Hartree-Fock wavefunctions  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Local Effective Hartree-Fock Potentials Obtained by the Depurated Inversion Method  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-07-29T10:48:16Z  
dc.journal.volume
76  
dc.journal.pagination
117-132  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Mendez, Marta Patricia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.description.fil
Fil: Miraglia, Jorge Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1016/bs.aiq.2017.07.004  
dc.conicet.paginas
357  
dc.source.titulo
Advances in Quantum Chemistry. Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems