Mostrar el registro sencillo del ítem

dc.contributor.author
Casaretto, Gimena  
dc.contributor.author
Schwartz, Craig S.  
dc.contributor.author
Dillon, María Eugenia  
dc.contributor.author
Garcia Skabar, Yanina  
dc.contributor.author
Ruiz, Juan Jose  
dc.date.available
2025-07-30T11:31:32Z  
dc.date.issued
2025-06  
dc.identifier.citation
Casaretto, Gimena; Schwartz, Craig S.; Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems; American Meteorological Society; Weather and Forecasting; 40; 6; 6-2025; 781-794  
dc.identifier.issn
0882-8156  
dc.identifier.uri
http://hdl.handle.net/11336/267468  
dc.description.abstract
This study applies the ensemble forecast sensitivity to observation impact (EFSOI) technique to two 80-member ensemble Kalman filter (EnKF) data assimilation (DA) systems over the United States, differing only in cycling strategy: continuous cycling (CC) and partial cycling (PC). EFSOI calculations were performed using 1-, 6-, and 12-h evaluation forecast times, verified against the Rapid Refresh (RAP) model analysis. Beneficial impact rates indicated that most observations were beneficial for both DA systems and forecast times, with no significant difference between PC and CC. Differences in cumulative observation impacts were statistically significant only for sources with few observations and small impacts, like mesonet observations. For numerous and impactful observations, such as rawinsondes and aircraft, differences were not statistically significant, suggesting similar use of important observations by PC and CC. PC forecasts were better than CC forecasts, but this improvement is not clearly due to better use of observations. Variable-wise analysis showed similar behavior between PC and CC for impact rates and cumulative impacts of U, V, T, relative humidity (RH), and surface zonal wind. Overall, there was no evidence that either PC or CC systematically used observations better, with mixed results across observation types and sources. Differences between PC and CC were typically small and not statistically significant for the most impactful observations and variables. Fundamental methodological differences between PC and CC did not significantly impact their ability to assimilate observations, with the process of ingesting global fields likely responsible for improved PC forecasts relative to CC.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Meteorological Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
OBSERVATION IMPACT  
dc.subject
ENSEMBLE FORECAST  
dc.subject
CONTINUOUS AND PARTIAL CYCLING  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Exploring Quantitative Observation Impact in Partial and Continuous Cycling Ensemble Kalman Filter Data Assimilation Systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-29T11:47:26Z  
dc.journal.volume
40  
dc.journal.number
6  
dc.journal.pagination
781-794  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Boston  
dc.description.fil
Fil: Casaretto, Gimena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); Argentina  
dc.description.fil
Fil: Schwartz, Craig S.. National Center for Atmospheric Research; Estados Unidos  
dc.description.fil
Fil: Dillon, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaría de Planeamiento. Servicio Meteorológico Nacional. Servicio Meteorológico Nacional (sede Dorrego); Argentina  
dc.description.fil
Fil: Garcia Skabar, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional. Servicio Metereológico Nacional (sede Dorrego).; Argentina  
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina  
dc.journal.title
Weather and Forecasting  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/view/journals/wefo/aop/WAF-D-24-0127.1/WAF-D-24-0127.1.xml  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1175/WAF-D-24-0127.1