Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A high-yielding traits experiment for modeling potential production of wheat: field experiments and AgMIP-Wheat multi-model simulations

Guarin, Jose; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; Calderini, Daniel Fernando; Reynolds, Matthew; Molero, Gemma; Miralles, Daniel JulioIcon ; Garcia, GuillermoIcon ; Slafer, Gustavo ArielIcon ; Giunta, Francesco; Pequeno, Diego; Stella, Tommaso; Ahmed, Mukhtar; Alderman, Phillip; Basso, Bruno; Berger, Andres; Bindi, Marco; Bracho Mujica, Gennady; Cammarano, Davide; Chen, Yi; Dumont, Benjamin; Eyshi Rezaei, Ehsan; Fereres, Elias; Zhao, Chuang; Zhao, Jin; Zhao, Zhigan; Zhu, Yan; Asseng, Senthold
Fecha de publicación: 07/2023
Editorial: Wageningen: Alterra WageningenUR
Revista: Open Data Journal for Agricultural Research
e-ISSN: 2352-6378
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

Grain production must increase by 60% in the next four decades to keep up with the expected population growth and food demand. A significant part of this increase must come from the improvement of staple crop grain yield potential. Crop growth simulation models combined with field experiments and crop physiology are powerful tools to quantify the impact of traits and trait combinations on grain yield potential which helps to guide breeding towards the most effective traits and trait combinations for future wheat crosses. The dataset reported here was created to analyze the value of physiological traits identified by the International Wheat Yield Partnership (IWYP) to improve wheat potential in high-yielding environments. This dataset consists of 11 growing seasons at three high-yielding locations in Buenos Aires (Argentina), Ciudad Obregon (Mexico), and Valdivia (Chile) with the spring wheat cultivar Bacanora and a high-yielding genotype selected from a doubled haploid (DH) population developed from the cross between the Bacanora and Weebil cultivars from the International Maize and Wheat Improvement Center (CIMMYT). This dataset was used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Phase 4 to evaluate crop model performance when simulating high-yielding physiological traits and to determine the potential production of wheat using an ensemble of 29 wheat crop models. The field trials were managed for non-stress conditions with full irrigation, fertilizer application, and without biotic stress. Data include local daily weather, soil characteristics and initial soil conditions, cultivar information, and crop measurements (anthesis and maturity dates, total above-ground biomass, final grain yield, yield components, and photosynthetically active radiation interception). Simulations include both daily in-season and end-of-season results for 25 crop variables simulated by 29 wheat crop models.
Palabras clave: wheat , modelling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 216.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267402
URL: https://odjar.org/article/view/18573
DOI: http://dx.doi.org/10.18174/odjar.v9i0.18573
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Guarin, Jose; Martre, Pierre; Ewert, Frank; Webber, Heidi; Dueri, Sibylle; et al.; A high-yielding traits experiment for modeling potential production of wheat: field experiments and AgMIP-Wheat multi-model simulations; Wageningen: Alterra WageningenUR; Open Data Journal for Agricultural Research; 9; 7-2023; 26-33
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES