Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Pinning Excited State Self-Trapping with All-Benzene Trefoil Knot

Freixas, Victor M.; Oldani, Andres NicolasIcon ; Alfonso Hernandez, LauraIcon ; Ondarse Alvarez, DianelysIcon ; Negrín Yuvero, Lázaro HassielIcon ; Galindo, Johan Fabian; Tretiak, Sergei; Fernández Alberti, SebastiánIcon
Fecha de publicación: 04/2025
Editorial: American Chemical Society
Revista: The Journal of Physical Chemistry Letters
ISSN: 1948-7185
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

The synthesis of novel carbon nanostructures with unique topologies expands the landscape of organic molecules, introducing new chemical properties and potential applications. Carbon nanorings, composed of cyclic paraphenylene (CPP) chains, serve as a versatile scaffold for designing materials with unique molecular architectures that impact their optical properties and photoinduced dynamics. These new topologies alter the balance between competing π-conjugation effects, high bending strain energies, and steric hindrances imposed by the rearrangement of their cyclic structures. Here, we explore the photoinduced dynamics of the all-benzene trefoil knot using nonadiabatic excited-state molecular dynamics. We show how its absorption spectra can be modeled by a particle in a box constrained to the trefoil knot geometry, and we analyze the internal conversion process following photoexcitation. Our findings reveal an exciton intraring migration governed by the winding of the paraphenylene chain, ultimately leading to exciton self-trapping at specific high curvature regions of the knot. This behavior contrasts with the nondeterministic exciton self-trapping in the corresponding CPP, where localization occurs randomly across different phenylene units. Our results highlight the ability of molecular knots to control exciton dynamics through curvature, tension, and planarization effects, positioning these materials as promising candidates for future technological applications. This ability to precisely manipulate optical and electronic characteristics is essential for developing more efficient and versatile devices.
Palabras clave: Molecular Dynamics , Excitons , Absorption Spectroscopy , Aromatic Compounds , Excited States
Ver el registro completo
 
Archivos asociados
Tamaño: 4.790Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267387
URL: https://pubs.acs.org/doi/10.1021/acs.jpclett.5c00746
DOI: http://dx.doi.org/10.1021/acs.jpclett.5c00746
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Freixas, Victor M.; Oldani, Andres Nicolas; Alfonso Hernandez, Laura; Ondarse Alvarez, Dianelys; Negrín Yuvero, Lázaro Hassiel; et al.; Pinning Excited State Self-Trapping with All-Benzene Trefoil Knot; American Chemical Society; The Journal of Physical Chemistry Letters; 16; 17; 4-2025; 4228-4235
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES