Artículo
Quantum covariance scalar products and efficient estimation of maximum-entropy projections
Fecha de publicación:
02/2024
Editorial:
American Physical Society
Revista:
Physical Review A
ISSN:
2469-9926
e-ISSN:
2469-9934
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The maximum-entropy principle (max-ent) is a valuable and extensively used tool in statistical mechanics and quantum information theory. It provides a method for inferring the state of a system by utilizing a reduced set of parameters associated with measurable quantities. However, the computational cost of employing max-ent projections in simulations of quantum many-body systems is a significant drawback, primarily due to the computational cost of evaluating these projections. In this work, a different approach for estimating max-ent projections is proposed. The approach involves replacing the expensive max-ent induced local geometry, represented by the Kubo-Mori-Bogoliubov scalar product, with a less computationally demanding geometry. Specifically, a new local geometry is defined in terms of the quantum analog of the covariance scalar product for classical random variables. Relations between induced distances and projections for both products are explored. Connections with standard variational and dynamical mean-field approaches are discussed. The effectiveness of the approach is calibrated and illustrated by its application to the dynamic of excitations in a XX Heisenberg spin-12 chain model.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Pérez, Federico Tomás Benito; Matera, Juan Mauricio; Quantum covariance scalar products and efficient estimation of maximum-entropy projections; American Physical Society; Physical Review A; 109; 2; 2-2024; 1-22
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analía Elizabeth (IOP Publishing, 2015-11-06)
-
Bustos Marun, Raul Alberto ; Calvo, Hernan Laureano (MDPI, 2019-08-23)
-
Nizama Mendoza, Marco Alfredo ; Caceres Garcia Faure, Manuel Osvaldo (Elsevier Science, 2014-04)