Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides

van der Merwe, Marianne; Lee, Yonghyuk; Wibowo, Romualdus Enggar; Kokumai, Tathiana; Efimenko, Anna; Arce, Mauricio DamiánIcon ; Jimenez, Catalina E.; Howchen, Benjamin; Suarez Anzorena, María del RosarioIcon ; Lucentini, Ilaria; Escudero, Carlos; Schuck, Götz; Kochovski, Zdravko; Favaro, Marco; Starr, David E.; Reuter, Karsten; Scheurer, Christoph; Bär, Marcus; Garcia Diez, Raul
Fecha de publicación: 11/2024
Editorial: Royal Society of Chemistry
Revista: Energy & Environmental Science
ISSN: 1754-5692
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

Understanding the oxygen evolution reaction (OER) and Ir dissolution mechanisms in amorphous, hydrous iridium oxides (am-hydr-IrOx) is hindered by the reliance on crystalline iridium oxide theoretical models to interpret its behaviour. This study presents a comprehensive investigation of hydrous iridium oxide thin films (HIROFs) as a model for am-hydr-IrOx to elucidate electronic and structural transformations under OER conditions of proton exchange membrane water electrolyzers (PEM-WE). Employing in situ and operando Ir L3-edge X-ray absorption spectroscopy supported by density functional theory calculations, we introduce a novel surface H-terminated nanosheet model that better characterizes the short-range structure of am-hydr-IrOx compared to previous crystalline models, which exhibits elongated Ir–O bond lengths compared to rutile-IrO2. This atomic model unveils the electronic and structural transformations of am-hydr-IrOx, progressing from H-terminated nanosheets to structures with multiple Ir vacancies and shorter bond-lengths at OER potentials. Notably, Ir dissolution emerges as a spontaneous, thermodynamically driven process, initiated at potentials lower than OER activation, which requires a parallel mechanistic framework describing Ir dissolution by Ir defect formation. Moreover, our results provide mechanistic insights into the activity-stability relationship of am-hydr-IrOx by systematically screening the DFT-calculated OER activity of diverse Ir and O chemical environments. This work challenges conventional perceptions of iridium dissolution and OER mechanisms in am-hydr-IrOx, providing an alternative perspective within a dual-mechanistic framework.
Palabras clave: IRIDIUM , ELECTROLYZER , PEM-WE , OXYGEN EVOLUTION REACTION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.455Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/267233
URL: https://xlink.rsc.org/?DOI=D4EE02839B
DOI: https://doi.org/10.1039/D4EE02839B
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos(UNIDEF)
Articulos de UNIDAD DE INVESTIGACION Y DESARROLLO ESTRATEGICOS PARA LA DEFENSA
Citación
van der Merwe, Marianne; Lee, Yonghyuk; Wibowo, Romualdus Enggar; Kokumai, Tathiana; Efimenko, Anna; et al.; Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides; Royal Society of Chemistry; Energy & Environmental Science; 18; 3; 11-2024; 1214-1231
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES