Artículo
Multiplicative Lidskii's inequalities and optimal perturbations of frames
Fecha de publicación:
15/03/2015
Editorial:
Elsevier Science Inc.
Revista:
Linear Algebra And Its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame F={fj}j∈In for Cd we compute those dual frames G of F that are optimal perturbations of the canonical dual frame for F under certain restrictions on the norms of the elements of G. On the other hand, we compute those V⋅F={Vfj}j∈In – for invertible operators V which are close to the identity – that are optimal perturbations of F. That is, we compute the optimal perturbations of F among frames G={gj}j∈In that have the same linear relations as F. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.
Archivos asociados
Licencia
Identificadores
URL:
http://goo.gl/xNx2CJ
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Multiplicative Lidskii's inequalities and optimal perturbations of frames; Elsevier Science Inc.; Linear Algebra And Its Applications; 469; 15-3-2015; 539-568
Compartir
Altmétricas