Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Features extraction method for brain-machine communication based on the empirical mode decomposition

Diez, Pablo FedericoIcon ; Mut, Vicente AntonioIcon ; Laciar Leber, EricIcon ; Torres, Abel; Avila Perona, Enrique Mario
Fecha de publicación: 07/2013
Editorial: World Scientific
Revista: Biomedical Engineering-applications Basis Communications
ISSN: 1016-2372
e-ISSN: 1793-7132
Idioma: Inglés
Tipo de recurso: Artículo publicado

Resumen

A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.
Palabras clave: Brain-Machine Interface (Bmi) , Brain-Computer Interface (Bci) , Empirical Mode Decomposition (Emd) , Feature Extraction
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 623.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/26707
URL: http://www.worldscientific.com/doi/abs/10.4015/S1016237213500580
DOI: http://dx.doi.org/10.1142/S1016237213500580
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario; Features extraction method for brain-machine communication based on the empirical mode decomposition; World Scientific; Biomedical Engineering-applications Basis Communications; 25; 6; 7-2013; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES