Mostrar el registro sencillo del ítem

dc.contributor.author
Azcarate, Silvana Mariela  
dc.contributor.author
de Araujo Gomes, Adriano  
dc.contributor.author
Muñoz de la Pena, Arsenio  
dc.contributor.author
Goicoechea, Hector Casimiro  
dc.date.available
2025-07-24T09:46:27Z  
dc.date.issued
2024  
dc.identifier.citation
Azcarate, Silvana Mariela; de Araujo Gomes, Adriano; Muñoz de la Pena, Arsenio ; Goicoechea, Hector Casimiro; Recent advances of multiway data modeling for classification issues; Elsevier; 2024; 193-217  
dc.identifier.isbn
9780443132612  
dc.identifier.uri
http://hdl.handle.net/11336/266967  
dc.description.abstract
Classification has been a challenging analytical problem over time, addressed to solve a myriad of issues in several research fields [1]. Moreover, modern laboratories are multianalytical platforms, where there is normally the possibility of making different analyses on the same sample offering very rich chemical information. This situation is able to generate several thousand variables per sample, and then, the collected data may have two, three, and more modes (dimensional structure) and/or may come from different sources comprising multiblocks of data. If by one way the instrumentation evolves tremendously, it makes to increase new trends in advanced classification procedures to use more sophisticated chemometrics approaches. This progressive growth from both sides in data generation, storage, and treatment has been introduced to the classification in the multiway context [2,3]. In multivariate classification settings, data handling is producing a significant impact on the development of analytical strategies, especially for determining characteristic patterns of analytes of interest in complex matrices, such as those found in environmental, biological, and food samples, among others. In this context, the mixing of analytical signals has arisen to achieve a better knowledge and characterization of a sample revealing certain synergic answers [4,5]. Irrespective of the specific samples under consideration or the classification problem at hand, multiway classification methods can be employed out of necessity to manage highly complex data structures. Moreover, these methods play a crucial role in elevating the data’s organization, thereby enhancing the informational quality of the sample set. This, in turn, contributes to the resolution of classification problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MULTIWAY  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Recent advances of multiway data modeling for classification issues  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-07-23T13:52:36Z  
dc.journal.pagination
193-217  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina  
dc.description.fil
Fil: de Araujo Gomes, Adriano. Universidade Federal do Rio Grande do Sul; Brasil  
dc.description.fil
Fil: Muñoz de la Pena, Arsenio. Universidad de Extremadura; España  
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://shop.elsevier.com/books/fundamentals-and-applications-of-multiway-data-analysis/olivieri/978-0-443-13261-2  
dc.conicet.paginas
650  
dc.source.titulo
Fundamentals and Applications of Multiway Data Analysis