Artículo
Nijenhuis operators on Banach homogeneous spaces
Fecha de publicación:
05/2024
Editorial:
European Mathematical Society
Revista:
Rendiconti Lincei-matematica E Applicazioni
ISSN:
1120-6330
e-ISSN:
1720-0768
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a Banach–Lie group G and an embedded Lie subgroup K, we consider the homogeneous Banach manifold M D G=K. In this context, we establish the most general conditions for a bounded operator N acting on Lie.G/ to define a homogeneous vector bundle map N W T M ! T M. In particular, our considerations extend all previous settings in the matter and are well suited for the case where Lie.K/ is not complemented in Lie.G/. We show that the vanishing of the Nijenhuis torsion for a homogeneous vector bundle map N W T M ! T M (defined by an admissible bounded operator N on Lie.G/) is equivalent to the Nijenhuis torsion of N having values in Lie.K/. As an application, we consider the question of the integrability of an almost complex structure J on M induced by an admissible bounded operator J , and we give a simple characterization of the integrability in terms of certain subspaces of the complexification of Lie.G/.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Golinksi, Tomasz; Larotonda, Gabriel Andrés; Tumpach, Alice Barbara; Nijenhuis operators on Banach homogeneous spaces; European Mathematical Society; Rendiconti Lincei-matematica E Applicazioni; 35; 4; 5-2024; 713-739
Compartir
Altmétricas