Mostrar el registro sencillo del ítem

dc.contributor.author
Tagirdzhanova, Gulnara  
dc.contributor.author
Saary, Paul  
dc.contributor.author
Cameron, Ellen S.  
dc.contributor.author
Allen, Carmen C. G.  
dc.contributor.author
Garber, Arkadiy I.  
dc.contributor.author
Escandón, David Díaz  
dc.contributor.author
Cook, Andrew T.  
dc.contributor.author
Goyette, Spencer  
dc.contributor.author
Nogerius, Veera Tuovinen  
dc.contributor.author
Passo, Alfredo  
dc.contributor.author
Mayrhofer, Helmut  
dc.contributor.author
Holien, Håkon  
dc.contributor.author
Tønsberg, Tor  
dc.contributor.author
Stein, Lisa Y.  
dc.contributor.author
Finn, Robert D.  
dc.contributor.author
Spribille, Toby  
dc.date.available
2025-07-23T12:44:07Z  
dc.date.issued
2024-11  
dc.identifier.citation
Tagirdzhanova, Gulnara; Saary, Paul; Cameron, Ellen S.; Allen, Carmen C. G.; Garber, Arkadiy I.; et al.; Microbial occurrence and symbiont detection in a global sample of lichen metagenomes; Public Library of Science; PLoS Biology; 22; 11; 11-2024; 1-42  
dc.identifier.issn
1544-9173  
dc.identifier.uri
http://hdl.handle.net/11336/266905  
dc.description.abstract
In lichen research, metagenomes are increasingly being used for evaluating symbiont composition and metabolic potential, but the overall content and limitations of these metagenomes have not been assessed. We reassembled over 400 publicly available metagenomes, generated metagenome-assembled genomes (MAGs), constructed phylogenomic trees, and mapped MAG occurrence and frequency across the data set. Ninety-seven percent of the 1,000 recovered MAGs were bacterial or the fungal symbiont that provides most cellular mass. Our mapping of recovered MAGs provides the most detailed survey to date of bacteria in lichens and shows that 4 family-level lineages from 2 phyla accounted for as many bacterial occurrences in lichens as all other 71 families from 16 phyla combined. Annotation of highly complete bacterial, fungal, and algal MAGs reveals functional profiles that suggest interdigitated vitamin prototrophies and auxotrophies, with most lichen fungi auxotrophic for biotin, most bacteria auxotrophic for thiamine and the few annotated algae with partial or complete pathways for both, suggesting a novel dimension of microbial cross-feeding in lichen symbioses. Contrary to longstanding hypotheses, we found no annotations consistent with nitrogen fixation in bacteria other than known cyanobacterial symbionts. Core lichen symbionts such as algae were recovered as MAGs in only a fraction of the lichen symbioses in which they are known to occur. However, the presence of these and other microbes could be detected at high frequency using small subunit rRNA analysis, including in many lichens in which they are not otherwise recognized to occur. The rate of MAG recovery correlates with sequencing depth, but is almost certainly influenced by biological attributes of organisms that affect the likelihood of DNA extraction, sequencing and successful assembly, including cellular abundance, ploidy and strain co-occurrence. Our results suggest that, though metagenomes are a powerful tool for surveying microbial occurrence, they are of limited use in assessing absence, and their interpretation should be guided by an awareness of the interacting effects of microbial community complexity and sequencing depth.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Lichens  
dc.subject
Symbiosis  
dc.subject
Bacteria  
dc.subject
metagenomics  
dc.subject.classification
Bioquímica y Biología Molecular  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Microbial occurrence and symbiont detection in a global sample of lichen metagenomes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-16T13:35:07Z  
dc.journal.volume
22  
dc.journal.number
11  
dc.journal.pagination
1-42  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Tagirdzhanova, Gulnara. University of Alberta; Canadá  
dc.description.fil
Fil: Saary, Paul. European Molecular Biology Laboratory. European Bioinformatics Institute.; Reino Unido  
dc.description.fil
Fil: Cameron, Ellen S.. European Molecular Biology Laboratory. European Bioinformatics Institute.; Reino Unido  
dc.description.fil
Fil: Allen, Carmen C. G.. University of Alberta; Canadá  
dc.description.fil
Fil: Garber, Arkadiy I.. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Escandón, David Díaz. University of Alberta; Canadá  
dc.description.fil
Fil: Cook, Andrew T.. University of Alberta; Canadá  
dc.description.fil
Fil: Goyette, Spencer. University of Alberta; Canadá  
dc.description.fil
Fil: Nogerius, Veera Tuovinen. Uppsala Universitet; Suecia  
dc.description.fil
Fil: Passo, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Mayrhofer, Helmut. University Of Graz.; Austria  
dc.description.fil
Fil: Holien, Håkon. Nord University; Noruega  
dc.description.fil
Fil: Tønsberg, Tor. University of Bergen; Noruega  
dc.description.fil
Fil: Stein, Lisa Y.. University of Alberta; Canadá  
dc.description.fil
Fil: Finn, Robert D.. European Molecular Biology Laboratory. European Bioinformatics Institute.; Reino Unido  
dc.description.fil
Fil: Spribille, Toby. University of Alberta; Canadá  
dc.journal.title
PLoS Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1371/journal.pbio.3002862