Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancing LSPIV accuracy in low-speed flows and heterogeneous seeding conditions using image gradient

Massó, LeandroIcon ; Patalano, AntoineIcon ; Garcia Rodriguez, Carlos MarceloIcon ; Ochoa García, Santiago A.; Rodriguez, AndresIcon
Fecha de publicación: 10/2024
Editorial: Elsevier
Revista: Flow Measurement And Instrumentation
ISSN: 0955-5986
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Civil

Resumen

Flow measurement in rivers and channels is crucial for water resource management and infrastructure planning, especially under the context of climate change. However, traditional methods like mechanical current meters and hydroacoustic instruments face limitations in terms of cost, intrusiveness, and accessibility. In recent years, image-based velocimetry techniques have emerged as promising alternatives due to their non-contact nature and cost-effectiveness. Nevertheless, persistent challenges remain, particularly concerning the uniform distribution of surface tracers necessary for precise measurements. These challenges are particularly pronounced in cases involving artificial seeding, where ensuring uniform distribution poses a significant obstacle. To address this issue, this study presents a novel methodology for filtering Large Scale Particle Image Velocimetry (LSPIV) data based on indicators of pixel intensity gradients. The methodology was evaluated across various field measurements under low flow conditions, encompassing a wide range of seeding characteristics. The evaluations demonstrated improvements in mean surface velocity profile estimation, showing reductions of up to 70% in normalized root mean square error compared to not using filters. Additionally, the results were compared with filters typically employed by experienced LSPIV users, such as background subtraction and cross-correlation coefficient thresholds, showing improvements with the proposed filter. Implementation of the proposed strategy reduces the subjectivity in LSPIV implementation, particularly for users with limited knowledge of the technique, but also require minimal post-processing efforts. The methodology is anticipated to be integrated into existing software tools, thereby enhancing the accessibility of LSPIV for individuals with limited expertise in image velocimetry. Overall, this methodology facilitates cost-effective expansion of hydrological information availability, particularly in resource-constrained regions.
Palabras clave: LSPIV , FIELD MEASUREMENTS , IMAGE PROCESSING , LOW SPEED FLOWS
Ver el registro completo
 
Archivos asociados
Tamaño: 15.30Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/266817
URL: https://linkinghub.elsevier.com/retrieve/pii/S0955598624001869
DOI: http://dx.doi.org/10.1016/j.flowmeasinst.2024.102706
Colecciones
Articulos(IDIT)
Articulos de INSTITUTO DE ESTUDIOS AVANZADOS EN INGENIERIA Y TECNOLOGIA
Citación
Massó, Leandro; Patalano, Antoine; Garcia Rodriguez, Carlos Marcelo; Ochoa García, Santiago A.; Rodriguez, Andres; Enhancing LSPIV accuracy in low-speed flows and heterogeneous seeding conditions using image gradient; Elsevier; Flow Measurement And Instrumentation; 100; 10-2024; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES