Mostrar el registro sencillo del ítem

dc.contributor.author
Chaix, Loïc  
dc.contributor.author
Gărăjeu, Mihail  
dc.contributor.author
Idiart, Martín Ignacio  
dc.contributor.author
Monnet, Ghiath  
dc.contributor.author
Vincent, Pierre Guy  
dc.date.available
2025-07-22T10:18:38Z  
dc.date.issued
2025-01  
dc.identifier.citation
Chaix, Loïc; Gărăjeu, Mihail; Idiart, Martín Ignacio; Monnet, Ghiath; Vincent, Pierre Guy; Computational homogenization of a physically-based crystal plasticity law for irradiated bainitic steels; Elsevier Science; Computational Materials Science; 246; 1-2025; 1-13  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/266747  
dc.description.abstract
The elasto-viscoplastic response of irradiated bainitic steels for pressure vessels of light water reactors is described by a multiscale micromechanical model. The model relies on a simplified set of complex constitutive equations describing intragranular flow under a wide range of temperatures, strain rates, and irradiation levels. These equations were themselves partially calibrated by multiscale analyses based on dislocation dynamics calculations, atomistic calculations, and experimental measurements. They include the contribution of jog drag, lattice friction, evolution of dislocation microstructures, and irradiation hardening. The scaling up of these intragranular laws to polycrystalline samples relies on a computational homogenization method which solves the field equations within periodic representative volume elements by means of Fast Fourier Transforms. This computational method proves advantageous relative to the finite element method in handling the complex microstructural morphology of the model required to achieve overall constitutive isotropy. Macroscopic simulations for uniaxial curves under different irradiation levels are first confronted to experimental curves to identify certain microscopic material parameters employed to describe the evolution of the mean-free path of dislocations with deformation. Subsequent comparisons for the evolution of the yield stress, irradiation hardening and the response to sudden strain-rate variations are then reported for a class of steels with various chemical compositions under wide ranges of temperature, loading rate and irradiation level. Good agreement is obtained in all cases. Finally, simulations are employed to explore the influence of the initial dislocation density on the intragranular stress and strain fields. An appreciable influence on the fields is observed during the elasto-viscoplastic transition but not deep in the plastic range.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
steels  
dc.subject
neutron radiation  
dc.subject
crystal plasticity  
dc.subject
computational homogenization  
dc.subject.classification
Ingeniería Nuclear  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Computational homogenization of a physically-based crystal plasticity law for irradiated bainitic steels  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-21T10:47:06Z  
dc.journal.volume
246  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Chaix, Loïc. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Gărăjeu, Mihail. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Idiart, Martín Ignacio. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Monnet, Ghiath. No especifíca;  
dc.description.fil
Fil: Vincent, Pierre Guy. No especifíca;  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927025624005378  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2024.113316