Evento
The lattice of envy-free many-to-many matchings with contracts
Bonifacio, Agustín Germán
; Guiñazú, Nadia Cecilia
; Juarez, Noelia Mariel
; Neme, Pablo Alejandro
; Oviedo, Jorge Armando





Tipo del evento:
Congreso
Nombre del evento:
IX Congreso de Matemática Aplicada, Computacional e Industrial
Fecha del evento:
08/05/2023
Institución Organizadora:
Instituto de Matemática Aplicada del Litoral “Dra. Eleonor Harboure”;
Asociación Argentina de Matemática Aplicada, Computacional e Industrial;
Centro de Investigación en Métodos Computacionales;
Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional;
Sección Argentina de la Society for Industrial and Applied Mathematics (Ar-SIAM);
Universidad Nacional de la Plata;
Título de la revista:
Matemática Aplicada, Computacional e Industrial
Editorial:
Asociación Argentina de Matemática Aplicada, Computacional e Industrial
ISSN:
2314-3282
Idioma:
Inglés
Clasificación temática:
Resumen
We study envy-free allocations in a many-to-many matching model with contracts in which agents on one side of the market (doctors) are endowed with substitutable choice functions and agents on the other side of the market (hospitals) are endowed with responsive preferences. Envy-freeness is a weakening of stability that allows blocking contracts involving a hospital with a vacant position and a doctor that does not envy any of the doctors that the hospital currently employs. We show that the set of envy-free allocations has a lattice structure. Furthermore, we define a Tarski operator on this lattice and use it to model a vacancy chain dynamic process by which, starting fromany envy-free allocation, a stable one is reached.
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(IMASL)
Eventos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Eventos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
The lattice of envy-free many-to-many matchings with contracts; IX Congreso de Matemática Aplicada, Computacional e Industrial; Santa Fe; Argentina; 2023; 327-330
Compartir