Mostrar el registro sencillo del ítem

dc.contributor.author
Mas, Ignacio Agustin  
dc.contributor.author
Giribet, Juan Ignacio  
dc.contributor.author
Peña Sanchez, Yerai  
dc.contributor.author
Penalba, Markel  
dc.contributor.author
García Violini, Diego Demián  
dc.date.available
2025-07-21T10:23:31Z  
dc.date.issued
2025-03  
dc.identifier.citation
Mas, Ignacio Agustin; Giribet, Juan Ignacio; Peña Sanchez, Yerai; Penalba, Markel; García Violini, Diego Demián; Exploring Gaussian processes for short-term forecasting in offshore energy systems; Pergamon-Elsevier Science Ltd; Ocean Engineering; 319; 3-2025; 1-13  
dc.identifier.issn
0029-8018  
dc.identifier.uri
http://hdl.handle.net/11336/266620  
dc.description.abstract
Offshore renewable energy (ORE) systems are expected to play a pivotal role in addressing global climate challenges by harnessing renewable energy sources from the ocean. This study explores short-term forecasting (predicting a few seconds into the future), to enhance the performance and reliability of ORE. Forecasting wave excitation force and wave height is essential for the management of operations, ensuring efficient energy extraction and safeguarding against potential risks. Thus, in this study Gaussian processes (GPs) are studied as a powerful forecasting tool, utilising experimental data from both lab-scale WEC systems and real-world wave measurements. The presented study evaluates various GP kernel functions, such as Squared Exponential, Periodic, Matérn and Gaussian Mixture, under diverse sea state conditions and forecasting horizons, ranging from fractions of the typical sea state period to twice that period. Results demonstrate the higher predictive accuracy and reliability of GP compared to the more common autoregressive methods, highlighting its ability to effectively model complex data patterns and uncertainties inherent to offshore environments. This comprehensive analysis underscores the capability of GPs to enhance operational decision-making in offshore energy, contributing to improved performance, efficiency and safety of ORE technologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Offshore renewable energies  
dc.subject
Ocean waves  
dc.subject
Forecasting  
dc.subject
Gaussian process  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Exploring Gaussian processes for short-term forecasting in offshore energy systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-16T13:38:07Z  
dc.journal.volume
319  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Mas, Ignacio Agustin. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Giribet, Juan Ignacio. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Peña Sanchez, Yerai. Mondragon University; España  
dc.description.fil
Fil: Penalba, Markel. Mondragon University; España  
dc.description.fil
Fil: García Violini, Diego Demián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina  
dc.journal.title
Ocean Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0029801824035789  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.oceaneng.2024.120240