Artículo
Reduced representations of Rayleigh–Bénard flows via autoencoders
Fecha de publicación:
03/2025
Editorial:
Cambridge University Press
Revista:
Journal of Fluid Mechanics
ISSN:
0022-1120
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We analysed the performance of convolutional autoencoders in generating reduced-order representations of the temperature field of two-dimensional Rayleigh–Bénard flows at Pr=1Pr=1\textit{Pr} =1 and Rayleigh numbers extending from 10610610^6 to 10810810^8, capturing the range where the flow transitions to turbulence. We present a way of estimating the minimum number of dimensions needed by the autoencoders to capture all the relevant physical scales of the data that is more apt for highly multiscale flows than previous criteria applied to lower-dimensional systems. We compare our architecture with two regularized variants as well as with linear methods, and find that manually fixing the dimension of the latent space produces the best results. We show how the estimated minimum dimension presents a sharp increase around Ra∼107Ra∼107Ra\sim 10^7, when the flow starts to transition to turbulence. Furthermore, we show how this dimension does not follow the same scaling as the physically relevant scales, such as the dissipation length scale and the thermal boundary layer.
Palabras clave:
AUTOENCODERS
,
TRANSITION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Vinograd, Melisa Yael; Clark Di Leoni, Patricio; Reduced representations of Rayleigh–Bénard flows via autoencoders; Cambridge University Press; Journal of Fluid Mechanics; 1006; 3-2025; 1-24
Compartir
Altmétricas