Artículo
Understanding Polymers Through Transfer Learning and Explainable AI
Fecha de publicación:
11/2024
Editorial:
Multidisciplinary Digital Publishing Institute
Revista:
Applied Sciences
e-ISSN:
2076-3417
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work we study the use of artificial intelligence models, particularly focusing on transfer learning and interpretability, to predict polymer properties. Given the challenges imposed by data scarcity in polymer science, transfer learning offers a promising solution by using learnt features of models pre-trained on other datasets. We conducted a comparative analysis of direct modelling and transfer learning-based approaches using a polyacrylates’ glass transitions dataset as a proof-of-concept study. The AI models utilized tokenized SMILES strings to represent polymer structures, with convolutional neural networks processing these representations to predict Tg. To enhance model interpretability, Shapley value analysis was employed to assess the contribution of specific chemical groups to the predictions. The results indicate that while transfer learning provides robust predictive capabilities, direct modelling on polymer-specific data offers superior performance, particularly in capturing the complex interactions influencing Tg. This work highlights the importance of model interpretability and the limitations of applying molecular-level models to polymer systems.
Palabras clave:
AI
,
Transfer learning
,
White boxing
,
Polymer glass transition
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Miccio, Luis Alejandro; Understanding Polymers Through Transfer Learning and Explainable AI; Multidisciplinary Digital Publishing Institute; Applied Sciences; 14; 22; 11-2024; 1-16
Compartir
Altmétricas