Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Estimation of the effect of interventions that modify treatment

Haneuse, Sebastian; Rotnitzky, Andrea GloriaIcon
Fecha de publicación: 08/2013
Editorial: Wiley
Revista: Statistics In Medicine
ISSN: 0277-6715
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Matemáticas

Resumen

Motivated by a study of surgical operating time and post-operative outcomes for lung cancer, we consider the estimation of causal effects of continuous point-exposure treatments. To investigate causality, the standard paradigm postulates a series of treatment-specific counterfactual outcomes and establishes conditions under which we may learn about them from observational study data. While many choices are possible, causal effects are typically defined in terms of variation of the mean of counterfactual outcomes in hypothetical worlds in which specific treatment strategies are ‘applied’ to all individuals. For example, one might compare two worlds: one where each individual receives some specific dose and a second where each individual receives some other dose. For our motivating study, defining causal effects in this way corresponds to (hypothetical) interventions that could not conceivably be implemented in the real world. In this work, we consider an alternative, complimentary framework that investigates variation in the mean of counterfactual outcomes under hypothetical treatment strategies where each individual receives a treatment dose corresponding to that actually received but modified in some pre-specified way. Quantification of this variation is defined in terms of contrasts for specific interventions as well as in terms of the parameters of a new class of marginal structural mean models. Within this framework, we propose three estimators: an outcome regression estimator, an inverse probability of treatment weighted estimator and a doubly robust estimator. We illustrate the methods with an analysis of the motivating data.
Palabras clave: Causal Inference , Observational Studies , Marginal Structural Mean Model , Double Robustness
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 381.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/26640
URL: http://onlinelibrary.wiley.com/doi/10.1002/sim.5907/abstract
DOI: http://dx.doi.org/10.1002/sim.5907
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Haneuse, Sebastian; Rotnitzky, Andrea Gloria; Estimation of the effect of interventions that modify treatment; Wiley; Statistics In Medicine; 32; 30; 8-2013; 5260-5277
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES