Mostrar el registro sencillo del ítem

dc.contributor.author
Orosco, Lorena Liliana  
dc.contributor.author
Garces Correa, Maria Agustina  
dc.contributor.author
Laciar Leber, Eric  
dc.date.available
2017-10-13T20:00:03Z  
dc.date.issued
2013-12  
dc.identifier.citation
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Review: A Survey of performance and techniques for automatic epilepsy detection; Institute of Biomedical Engineering; Journal of Medical and Biological Engineering; 33; 6; 12-2013; 526-537  
dc.identifier.issn
1609-0985  
dc.identifier.uri
http://hdl.handle.net/11336/26634  
dc.description.abstract
Epilepsy is a chronic neurological disorder of the brain that affects around 50 million people worldwide. The early detection of epileptic seizures using electroencephalogram (EEG) signals is a useful tool for several applications in epilepsy diagnosis. Many techniques have been developed for unscrambling the underlying features of seizures present in EEGs. This article reviews the seizure detection algorithms developed in the last decade. In general terms, techniques based on the wavelet transform, entropy, tensors, empirical mode decomposition, chaos theory, and dynamic analysis are surveyed in the field of epilepsy detection. A performance comparison of the reviewed algorithms is also conducted. The needs for a reliable practical implementation are highlighted and some future prospectives in the area are given. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow precise and quick diagnoses. Finally, the lack of standardization of the methods in the epileptic seizure detection field is an emerging problem that has to be solved to allow homogenous comparisons of detector performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Biomedical Engineering  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Epilepsy  
dc.subject
Seizure Detection Algorithm  
dc.subject
Performance  
dc.title
Review: A Survey of performance and techniques for automatic epilepsy detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-10-12T21:21:23Z  
dc.identifier.eissn
2199-4757  
dc.journal.volume
33  
dc.journal.number
6  
dc.journal.pagination
526-537  
dc.journal.pais
China  
dc.journal.ciudad
Taiwán  
dc.description.fil
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Medical and Biological Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.jmbe.org.tw/index.php?action=archives2&no=2027  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5405/jmbe.1463