Mostrar el registro sencillo del ítem
dc.contributor.author
Orosco, Lorena Liliana
dc.contributor.author
Garces Correa, Maria Agustina
dc.contributor.author
Laciar Leber, Eric
dc.date.available
2017-10-13T20:00:03Z
dc.date.issued
2013-12
dc.identifier.citation
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Review: A Survey of performance and techniques for automatic epilepsy detection; Institute of Biomedical Engineering; Journal of Medical and Biological Engineering; 33; 6; 12-2013; 526-537
dc.identifier.issn
1609-0985
dc.identifier.uri
http://hdl.handle.net/11336/26634
dc.description.abstract
Epilepsy is a chronic neurological disorder of the brain that affects around 50 million people worldwide. The early detection of epileptic seizures using electroencephalogram (EEG) signals is a useful tool for several applications in epilepsy diagnosis. Many techniques have been developed for unscrambling the underlying features of seizures present in EEGs. This article reviews the seizure detection algorithms developed in the last decade. In general terms, techniques based on the wavelet transform, entropy, tensors, empirical mode decomposition, chaos theory, and dynamic analysis are surveyed in the field of epilepsy detection. A performance comparison of the reviewed algorithms is also conducted. The needs for a reliable practical implementation are highlighted and some future prospectives in the area are given. Epilepsy detection research is oriented to develop non-invasive and precise methods to allow precise and quick diagnoses. Finally, the lack of standardization of the methods in the epileptic seizure detection field is an emerging problem that has to be solved to allow homogenous comparisons of detector performance.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Biomedical Engineering
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Epilepsy
dc.subject
Seizure Detection Algorithm
dc.subject
Performance
dc.title
Review: A Survey of performance and techniques for automatic epilepsy detection
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-10-12T21:21:23Z
dc.identifier.eissn
2199-4757
dc.journal.volume
33
dc.journal.number
6
dc.journal.pagination
526-537
dc.journal.pais
China
dc.journal.ciudad
Taiwán
dc.description.fil
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Medical and Biological Engineering
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.jmbe.org.tw/index.php?action=archives2&no=2027
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5405/jmbe.1463
Archivos asociados