Mostrar el registro sencillo del ítem

dc.contributor.author
Jurcic, Esteban Javier  
dc.contributor.author
Dutour, Joaquín  
dc.contributor.author
Villalba, Pamela Victoria  
dc.contributor.author
Centurión, Carmelo  
dc.contributor.author
Cantet, Rodolfo Juan Carlos  
dc.contributor.author
Munilla, Sebastián  
dc.contributor.author
Cappa, Eduardo Pablo  
dc.date.available
2025-07-16T15:08:22Z  
dc.date.issued
2025-03  
dc.identifier.citation
Jurcic, Esteban Javier; Dutour, Joaquín; Villalba, Pamela Victoria; Centurión, Carmelo; Cantet, Rodolfo Juan Carlos; et al.; Forest tree breeding using genomic Markov causal models: A new approach to genomic tree breeding improvement; Nature Publishing Group; Heredity; 134; 5; 3-2025; 280-292  
dc.identifier.issn
0018-067X  
dc.identifier.uri
http://hdl.handle.net/11336/266303  
dc.description.abstract
Traditionally, a pedigree-based individual-tree mixed model (ABLUP) has been used in forest genetic evaluations to identify individuals with the highest breeding values (BVs). ABLUP is a Markovian causal model, as any individual BV can be expressed as a linear regression on its parental BVs. The regression coefficients are based on the genealogical parent-offspring relationship and are equal to one-half. This study aimed to develop and apply two new causal models that replace these fixed coefficients with ones calculated using genomic information, specifically derived from the genomic-based relationship matrix. We compared the performance of these genomic-based causal models with ABLUP and non-causal GBLUP models. To do so, we evaluated a fourgeneration population of Eucalyptus grandis, consisting of 3082 genotyped trees with 14,033 single nucleotide polymorphism markers. Six traits were assessed in 1219 trees across the first three breeding cycles. The heritability and genetic means estimates were higher in the causal pedigree- and genomic-based models compared to GBLUP. Realized genetic gains were similar across all models, but the causal models more closely matched the predicted gains than GBLUP. In turn, GBLUP demonstrated better predictive performance, albeit with lower precision. The causal models developed in this study enable discerning intra-familial variations in the predictions of BVs at a lower computational burden and offer a potential alternative to the GBLUP model.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BREEDING VALUE  
dc.subject
ABLUP  
dc.subject
GBLUP  
dc.subject
GENOMIC-BASED CAUSAL MODELS  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Forest tree breeding using genomic Markov causal models: A new approach to genomic tree breeding improvement  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-16T13:38:11Z  
dc.journal.volume
134  
dc.journal.number
5  
dc.journal.pagination
280-292  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Jurcic, Esteban Javier. Instituto Nacional de Tecnología Agropecuaria; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina  
dc.description.fil
Fil: Dutour, Joaquín. UPM Uruguay; Uruguay  
dc.description.fil
Fil: Villalba, Pamela Victoria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina  
dc.description.fil
Fil: Centurión, Carmelo. UPM Uruguay; Uruguay  
dc.description.fil
Fil: Cantet, Rodolfo Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Academia Nacional de Agronomía y Veterinaria; Argentina  
dc.description.fil
Fil: Munilla, Sebastián. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Unidad Ejecutora de Investigaciones en Producción Animal. Universidad de Buenos Aires. Facultad de Ciencias Veterinarias. Unidad Ejecutora de Investigaciones en Producción Animal; Argentina  
dc.description.fil
Fil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; Argentina  
dc.journal.title
Heredity  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41437-025-00755-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1038/s41437-025-00755-z