Mostrar el registro sencillo del ítem

dc.contributor.author
González, Sergio Alberto  
dc.contributor.author
Rivarola, Máximo  
dc.contributor.author
Ribone, Andrés Ignacio  
dc.contributor.author
Lew, Sergio Eduardo  
dc.contributor.author
Paniego, Norma Beatriz  
dc.date.available
2025-07-16T12:49:04Z  
dc.date.issued
2024-12  
dc.identifier.citation
González, Sergio Alberto; Rivarola, Máximo; Ribone, Andrés Ignacio; Lew, Sergio Eduardo; Paniego, Norma Beatriz; Comprehensive Analysis of the Influence of Technical and Biological Variations on De Novo Assembly of RNA-Seq Datasets; SAGE Publications; Bioinformatics and Biology Insights; 18; 12-2024; 1-13  
dc.identifier.issn
1177-9322  
dc.identifier.uri
http://hdl.handle.net/11336/266240  
dc.description.abstract
De novo assembly of transcriptomes from species without reference genome remains a common problem in functional genomics. While methods and algorithms for transcriptome assembly are continually being developed and published, the quality of de novo assemblies using short reads depends on the complexity of the transcriptome and is limited by several types of errors. One problem to overcome is the research gap regarding the best method to use in each study to obtain high-quality de novo assembly. Currently, there are no established protocols for solving the assembly problem considering the transcriptome complexity. In addition, the accuracy of quality metrics used to evaluate assemblies remains unclear. In this study, we investigate and discuss how different variables accounting for the complexity of RNA-Seq data influence assembly results independently of the software used. For this purpose, we simulated transcriptomic short-read sequence datasets from high-quality full-length predicted transcript models with varying degrees of complexity. Subsequently, we conducted de novo assemblies using different assembly programs, and compared and classified the results using both reference-dependent and independent metrics. These metrics were assessed both individually and combined through multivariate analysis. The degree of alternative splicing and the fragment size of the paired-end reads were identified as the variables with the greatest influence on the assembly results. Moreover, read length and fragment size had different influences on the reconstruction of longer and shorter transcripts. These results underscore the importance of understanding the composition of the transcriptome under study, and making experimental design decisions related to the need to work with reads and fragments of different sizes. In addition, the choice of assembly software will positively impact the final assembly outcome. This selection will affect the completeness of represented genes and assembled isoforms, as well as contribute to error reduction.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
SAGE Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
DE NOVO ASSEMBLY  
dc.subject
SHORT READS  
dc.subject
TRANSCRIPTOMICS  
dc.subject
EVALUATION METRICS  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Comprehensive Analysis of the Influence of Technical and Biological Variations on De Novo Assembly of RNA-Seq Datasets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-14T10:48:51Z  
dc.identifier.eissn
1177-9322  
dc.journal.volume
18  
dc.journal.pagination
1-13  
dc.journal.pais
Nueva Zelanda  
dc.journal.ciudad
Auckland  
dc.description.fil
Fil: González, Sergio Alberto. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina  
dc.description.fil
Fil: Rivarola, Máximo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ribone, Andrés Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Lew, Sergio Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Ingeniería Biomédica; Argentina  
dc.description.fil
Fil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina  
dc.journal.title
Bioinformatics and Biology Insights  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.sagepub.com/doi/epub/10.1177/11779322241274957  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1177/11779322241274957