Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Identification and validation of drugs for repurposing in Glioblastoma: A computational and experimental workflow

González, NazarenoIcon ; Perez Kuper, Melanie; Garcia Fallit, MatíasIcon ; Peña Agudelo, Jorge ArmandoIcon ; Nicola Candia, Alejandro JavierIcon ; Suarez Velandia, Maicol Mauricio; Videla Richardson, GuillermoIcon ; Candolfi, MarianelaIcon
Fecha de publicación: 05/2024
Editorial: Cold Spring Harbor Laboratory Press
Revista: bioRxiv
e-ISSN: 2692-8205
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

Purpose: Glioblastoma (GBM) remains a formidable challenge in oncology due to its invasiveness and resistance to treatment, i.e. surgery, radiotherapy, and chemotherapy with temozolomide. This study aimed to develop and validate an integrated model to predict the sensitivity of GBM to alternative chemotherapeutics and to identify novel candidate drugs and combinations for the treatment of GBM. Patients and Methods: We utilized the drug sensitivity response data of 272 compounds from CancerRxTissue, a validated predictive model, to identify drugs with therapeutic potential for GBM. Using the IC50, we selected 'potentially effective' drugs among those predicted to be blood-brain barrier permeable via in silico algorithms. We ultimately selected drugs with targets overexpressed and associated with worse prognosis in GBM for experimental in vitro validation. Results: The workflow proposed predicted that GBM is more sensitive to Etoposide and Cisplatin, in comparison with Temozolomide, effects that were validated in vitro in a set of GBM cellular models. Using this workflow, we identified a set of 5 novel drugs to which GBM would exhibit high sensitivity and selected Daporinad, a blood-brain barrier permeant NAMPT inhibitor, for further preclinical in vitro evaluation, which aligned with the in silico prediction. Conclusion: Our results suggest that this workflow could be useful to select potentially effective drugs and combinations for GBM, according to the molecular characteristics of the tumor. This comprehensive workflow, which integrates computational prowess with experimental validation, could constitute a simple tool for identifying and validating compounds with potential for drug reporpusing in GBM and other tumors.
Palabras clave: GLIOBLASTOMA , DAPORINAD , PREDICTIVE MODEL , PERSONALIZED MEDICINE , COMBINATION THERAPY
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.000Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/266208
URL: https://www.biorxiv.org/content/10.1101/2024.04.29.589520v3.full
DOI: https://doi.org/10.1101/2024.04.29.589520
Colecciones
Articulos(IBYME)
Articulos de INST.DE BIOLOGIA Y MEDICINA EXPERIMENTAL (I)
Articulos(INBIOMED)
Articulos de INSTITUTO DE INVESTIGACIONES BIOMEDICAS
Citación
González, Nazareno; Perez Kuper, Melanie; Garcia Fallit, Matías; Peña Agudelo, Jorge Armando; Nicola Candia, Alejandro Javier; et al.; Identification and validation of drugs for repurposing in Glioblastoma: A computational and experimental workflow; Cold Spring Harbor Laboratory Press; bioRxiv; 5-2024; 1-49
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES