Artículo
SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space
Filgueira de Azevedo, Walter; Quiroga, Rodrigo
; Villarreal, Marcos Ariel
; Freitas Da Silveira, Nelson José; Bitencourt Ferreira, Gabriela; Duarte da Silva, Amauri; Veit Acosta, Martina; Rufino Oliveira, Patricia; Tutone, Marco; Biziukova, Nadezhda; Poroikov, Vladimir; Tarasova, Olga; Baud, Stéphaine


Fecha de publicación:
06/2024
Editorial:
John Wiley & Sons
Revista:
Journal of Computational Chemistry
ISSN:
0192-8651
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein–ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein–ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Filgueira de Azevedo, Walter; Quiroga, Rodrigo; Villarreal, Marcos Ariel; Freitas Da Silveira, Nelson José; Bitencourt Ferreira, Gabriela; et al.; SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space; John Wiley & Sons; Journal of Computational Chemistry; 45; 27; 6-2024; 2333-2346
Compartir
Altmétricas