Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Aqueous solution chemistry in silico and the role of data-driven approaches

Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; Di Pino, Solana MagalíIcon ; Díaz Mirón, GonzaloIcon ; Stella, Martina; Sormani, Giulia; Neza Hozana, Germaine; Monti, Marta; Morzan, UrielIcon ; Rodriguez, Alex; Cassone, Giuseppe; Jelic, Asja; Scherlis Perel, Damian ArielIcon ; Hassanali, Ali
Fecha de publicación: 06/2024
Editorial: American Institute of Physics
Revista: Chemical Physics Reviews
ISSN: 2688-4070
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future.
Palabras clave: DFT , Molecular dyamics , water , machine learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.228Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/266159
URL: https://pubs.aip.org/cpr/article/5/2/021308/3300328/Aqueous-solution-chemistry-i
DOI: http://dx.doi.org/10.1063/5.0207567
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; et al.; Aqueous solution chemistry in silico and the role of data-driven approaches; American Institute of Physics; Chemical Physics Reviews; 5; 2; 6-2024; 1-23
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES