Artículo
Aqueous solution chemistry in silico and the role of data-driven approaches
Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; Di Pino, Solana Magalí
; Díaz Mirón, Gonzalo
; Stella, Martina; Sormani, Giulia; Neza Hozana, Germaine; Monti, Marta; Morzan, Uriel
; Rodriguez, Alex; Cassone, Giuseppe; Jelic, Asja; Scherlis Perel, Damian Ariel
; Hassanali, Ali




Fecha de publicación:
06/2024
Editorial:
American Institute of Physics
Revista:
Chemical Physics Reviews
ISSN:
2688-4070
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The use of computer simulations to study the properties of aqueous systems is, today more than ever, an active area of research. In this context, during the last decade there has been a tremendous growth in the use of data-driven approaches to develop more accurate potentials for water as well as to characterize its complexity in chemical and biological contexts. We highlight the progress, giving a historical context, on the path to the development of many-body and reactive potentials to model aqueous chemistry, including the role of machine learning strategies. We focus specifically on conceptual and methodological challenges along the way in performing simulations that seek to tackle problems in modeling the chemistry of aqueous solutions. In conclusion, we summarize our perspectives on the use and integration of advanced data-science techniques to provide chemical insights into physical chemistry and how this will influence computer simulations of aqueous systems in the future.
Palabras clave:
DFT
,
Molecular dyamics
,
water
,
machine learning
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Banerjee, Debarshi; Azizi, Khatereh; Egan, Colin K.; Donkor, Edward Danquah; Malosso, Cesare; et al.; Aqueous solution chemistry in silico and the role of data-driven approaches; American Institute of Physics; Chemical Physics Reviews; 5; 2; 6-2024; 1-23
Compartir
Altmétricas