Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling

Massaccesi, Gustavo ErnestoIcon ; Oña, Ofelia BeatrizIcon ; Capuzzi, PabloIcon ; Melo, Juan IgnacioIcon ; Lain, Luis; Torre, Alicia; Peralta, Juan E.; Alcoba, Diego RicardoIcon ; Scuseria, Gustavo E.
Fecha de publicación: 11/2024
Editorial: American Chemical Society
Revista: Journal of Chemical Theory and Computation
ISSN: 1549-9618
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física Atómica, Molecular y Química

Resumen

The N-representability problem consists in determining whether, for a given p-body matrix, there exists at least one N-body density matrix from which the p-body matrix can be obtained by contraction, that is, if the given matrix is a p-body reduced density matrix (p-RDM). The knowledge of all necessary and sufficient conditions for a p-body matrix to be N-representable allows the constrained minimization of a many-body Hamiltonian expectation value with respect to the p-body density matrix and, thus, the determination of its exact ground state. However, the number of constraints that complete the N-representability conditions grows exponentially with system size, and hence, the procedure quickly becomes intractable for practical applications. This work introduces a hybrid quantum-stochastic algorithm to effectively replace the N-representability conditions. The algorithm consists of applying to an initial N-body density matrix a sequence of unitary evolution operators constructed from a stochastic process that successively approaches the reduced state of the density matrix on a p-body subsystem, represented by a p-RDM, to a target p-body matrix, potentially a p-RDM. The generators of the evolution operators follow the well-known adaptive derivative-assembled pseudo-Trotter method (ADAPT), while the stochastic component is implemented by using a simulated annealing process. The resulting algorithm is independent of any underlying Hamiltonian, and it can be used to decide whether a given p-body matrix is N-representable, establishing a criterion to determine its quality and correcting it. We apply the proposed hybrid ADAPT algorithm to alleged reduced density matrices from a quantum chemistry electronic Hamiltonian, from the reduced Bardeen–Cooper–Schrieffer model with constant pairing, and from the Heisenberg XXZ spin model. In all cases, the proposed method behaves as expected for 1-RDMs and 2-RDMs, evolving the initial matrices toward different targets.
Palabras clave: N‑Representability
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.332Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/266157
URL: https://pubs.acs.org/doi/10.1021/acs.jctc.4c01166
DOI: http://dx.doi.org/10.1021/acs.jctc.4c01166
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Massaccesi, Gustavo Ernesto; Oña, Ofelia Beatriz; Capuzzi, Pablo; Melo, Juan Ignacio; Lain, Luis; et al.; Determining the N -Representability of a Reduced Density Matrix via Unitary Evolution and Stochastic Sampling; American Chemical Society; Journal of Chemical Theory and Computation; 20; 22; 11-2024; 9968-9976
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES