Artículo
Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven Seven-Gene Stemness Signature That Predicts Progression
Sabater, Agustina Ayelen
; Sanchis, Pablo Antonio
; Seniuk, Rocio Alejandra
; Pascual, Gastón Mario
; Anselmino, Nicolás
; Alonso, Daniel Fernando
; Cayol, Federico; Vazquez, Elba Susana
; Marti, Marcelo Adrian
; Cotignola, Javier Hernan
; Toro, Ayelen Rayen
; Labanca, Estefania; Bizzotto, Juan Antonio
; Gueron, Geraldine












Fecha de publicación:
10/2024
Editorial:
Molecular Diversity Preservation International
Revista:
International Journal of Molecular Sciences
ISSN:
1422-0067
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using advanced machine learning techniques, including Random Forest and Lasso regression, applied to large-scale transcriptomic datasets. The resulting seven-gene signature (KMT5C, DPP4, TYMS, CDC25B, IRF5, MEN1, and DNMT3B) was validated across independent cohorts and patient-derived xenograft (PDX) models. This signature demonstrated strong prognostic value for progression-free, disease-free, relapse-free, metastasis-free, and overall survival. Importantly, the signature not only identified specific NEPC subtypes, such as large-cell neuroendocrine carcinoma, which is associated with very poor outcomes, but also predicted a poor prognosis for PCa cases that exhibit this molecular signature, even when they were not histopathologically classified as NEPC. This dual prognostic and classifier capability makes the seven-gene signature a robust tool for personalized medicine, providing a valuable resource for predicting disease progression and guiding treatment strategies in PCa management.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIBICEN)
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Citación
Sabater, Agustina Ayelen; Sanchis, Pablo Antonio; Seniuk, Rocio Alejandra; Pascual, Gastón Mario; Anselmino, Nicolás; et al.; Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven Seven-Gene Stemness Signature That Predicts Progression; Molecular Diversity Preservation International; International Journal of Molecular Sciences; 25; 21; 10-2024; 1-18
Compartir
Altmétricas